Временное электроснабжение строительной площадки: назначение, потребители, способы расчета максимальной нагрузки и подбор источников, схемы прокладки. Расчет потребности стройплощадки в электроэнергии Расчет временного электроснабжения

Освещение, в каком бы виде оно не было реализовано, неизбежно влечет за собой растраты. Поэтому при организации системы подсветки любого помещения или территории, необходимо четко понимать, какой объем расходов это за собой повлечет.

Освещение помещения

Расчет, который касается затрат на электроэнергию и прочих аспектов организации подсветки помещения или прилежащей к зданию территории, должен включать в себя многие нюансы, о которых мы поговорим в нашей статье.

Важные аспекты реализации подсветки

Освещение (световое обеспечение) на сегодня – это неотъемлемый аспект нашей жизни, организации рабочего процесса, домашнего быта или уличной безопасности. В каком бы виде оно не реализовывалось, необходимо помнить, что расходы будут неминуемы. Но число затрат, которое пойдет на реализацию того или иного светового обеспечения, определяется рядом факторов. Например:

  • тип помещения и его предназначение (то же касается и подсветки территории);

Обратите внимание! Для рабочих сооружений расход в данном случае составит гораздо большие объемы, чем при организации домашней подсветки квартир и домов. Это прописано в нормах, приведенных в СНиП и других регламентирующих документах.

Освещение предприятия

  • габариты помещения. Чем больше будут габариты помещения, тем больше затрат будет требоваться на качественное и полноценное его освещение;
  • количество осветительных приборов, а также число используемых источников света. При этом стоит делать поправку на предназначение светильников: одни из них подходят для помещения, а другие – территории;
  • вид источника света. На сегодняшний день используется несколько разновидностей лампочек.

Обратите внимание! Наибольшие количество затрат на оплату электроэнергии будет при использовании обычных ламп накаливания. Но зато здесь уменьшится статья расходов на их покупку, поскольку это самые дешевые источники света. Это необходимо обязательно брать в расчет при выборе источника света для помещения или прилежащей к зданию территории.

Лампа накаливания

Об источниках света стоит поговорить отдельно, так как с их помощью можно в определенной мере снизить уровень предстоящих затрат.

Значение источника света для вычислений

Расчет количества затрат на освещение во многом определяется типом используемых источников света. На сегодняшний день для придомовой территории и сооружений используется несколько видов лапочек:

Галогеновая лампочка

  • лампы накаливания. Это самые старые источники света, которые характеризуются непродолжительным сроком эксплуатации, а также высоким потреблением электроэнергии. Поэтому расчет количества затрат на освещение при их использовании завершится самым большим результатом. При этом расчет затрат на покупку будет обратным. Это связано с тем, что лампы накаливания стоят намного дешевле остальных видов источников. Поэтому количество затрат на их покупку будет минимальным. Но при этом они, конечно, прослужат гораздо меньше, что опять-таки приведет к дополнительным расходам;

Обратите внимание! Использование ламп накаливания для любого типа помещения или территории будет наиболее невыгодным с точки зрения затрат на электроэнергию и покупку новые лампочек.

  • галогеновые. Это усовершенствованные источники света. Поэтому они работают несколько дольше, чем их предшественники, а также потребляют несколько меньше электроэнергии. Такие лампочки часто встречаются на предприятиях и других строениях общественного назначения;
  • люминесцентные. Они более совершенны, чем галогеновые лампочки и лампы накаливания. Расчет количества затрат на их использование будет находиться примерно на одном уровне с галогеновыми источниками света. Такие лампочки часто используются как для подсветки как помещения (жилого или нежилого), так и территории;

Люминесцентная лампочка

Светодиодная лампочка

  • светодиодные. Данный тип лампочек считается на сегодняшний день самым современным. Выгода от их использования кроется в том, что количество затрат на оплату потребленной электроэнергии здесь будет минимальным. Такие изделия потребляют минимум электроэнергии и могут добиться экономии от 50 до 90%. Но при этом их стоимость достаточно высока (самая большая среди всех видов источников света). Поэтому статья расходов на их приобретение будет больше, чем у остальных лампочек.

Обратите внимание! Высокая стоимость светодиодной продукции оправдана тем, что такие лампочки потребляют минимум электроэнергии, а также прослужат более десяти лет. Поэтому их покупка с точки зрения затрат на освещение будет наиболее оправданной.

Как видим, для минимизации затрат на освещение любого помещения или прилежащей к сооружению территории лучше отдавать предпочтение светодиодной осветительной продукции.

Дополнительный аспект проведения вычислений

Расчет размера затрат на освещение включает в себя не только вышеперечисленные моменты. Здесь еще необходимо учитывать такие факторы, как:

  • затраты на оборудование;
  • правильность организации системы подсветки в рамках норм и требований, приведенных в регламентирующей документации (например, в СНиП);
  • приобретение сертифицированных осветительных приборов. Особенно это правило качается любых видов производственных и промышленных процессов;
  • затраты, которые пойдут на создание соответствующего проекта, его утверждение и сдачу в работу;
  • ежемесячные затраты на оплату коммунальных услуг за потребленную электроэнергию.

Все это количество расходов должно быть подсчитано для каждого помещения и прилежащей к зданию территории. При этом необходимо помнить о том, что расчет для уличной территории и помещения будет различаться. Рассмотрим оба варианта более подробно.

Вычисления для комнат

Внутри строений основой затрат на освещение, после сдачи сооружения в эксплуатацию, будет составлять покупка осветительного оборудования, а также ежемесячные расходы на оплату потребленной электроэнергии. Наиболее актуален расчет растрат на освещение для промышленных сооружений.

Расчет в данной ситуации может проводиться для различных областей:

  • отдельного участка;
  • цеха;
  • рабочей зоны одного или нескольких сотрудников и т. д.

Здесь потребность в электроэнергии можно рассчитать по следующей формуле:

Эта формула означает:

  • EPa – активная суммарная мощность для всех электродвигателей зоны (кВт);
  • Ф0 – годовой фонд для рабочего времени (час);
  • П0 – коэффициент, отражающий одновременность работы оборудования. Он равняется 0,6…0,7;
  • П30 – коэффициент, отражающий загрузку оборудования (0,85…0,90);
  • Псети – КПД используемой сети (0,95…0,97);
  • Пэд – КПД для электродвигателей (0,85…0,97).

Это показатель имеет косвенное значение для расчета освещения. А вот вся осветительная система должна рассчитываться в соответствии с нормами для уровня светового обеспечения промышленных объектов.

Обратите внимание! Вид выполняемой работы предопределяет подбор светильников и их мощность.

В данной ситуации расчет электроэнергии можно вычислить по удельному расходу электроэнергии, определенной на один квадратный метр площади пола (р). Он зависит от вида территории. К примеру, для зон ТР и ТО этот показатель можно приравнять на один квадратный метр к p = 0,015. С помощью этого показателя можно определить мощность освещения. Для этого нужна следующая формула:

  • р – удельная мощность освещения (кВт/м2);
  • S – площадь конкретного помещения (м2).

Обратите внимание! Удельная мощность светового обеспечения для конкретных помещений берется из справочников.

Но это не все формулы и вычисления, которые нужны для помещений.

Вычисления для светильников

Расчет растрат на световое обеспечение внутри строений предполагает определение количества осветительных приборов, а также их тип. Здесь нужна такая формула:

В ней для расчета нужны следующие значения:

  • Пе – число осветительных приборов (шт);
  • Pn – мощность ламп (кВт).
  • Расход электроэнергии для подсветки зависит от ряда показателей:
  • потребляемой мощности;
  • одновременности применения источников света;
  • КПД сети;
  • количества часов горения в сутки;
  • количества рабочих дней в конкретном году.

Расход электроэнергии можно определить по формуле:

  • Pa – мощность освещения площади (кВт);
  • k – коэффициент, отражающий одновременность применения осветительных приборов.

Обратите внимание! Эта формула применяется для производственных (с k = 0,5…1,0), складских (с k = 0,6) и бытовых помещений (с k = 0,9).

Все остальные значения расшифрованы в первой формуле из нашего предыдущего раздела.
Также можно рассчитать общую потребность в электроэнергии по следующей формуле:

Стоимость электроэнергии рассчитывается по такой формуле:

Здесь применяются следующие значения:

  • с- цена, установленная за 1 кВтч потребленной электроэнергии (р / кВтч);
  • q - удельный расход электроэнергии, который составляет на 1 квадратный метр площади участка (Вт / м2);
  • S- площадь участка, который освещается (м2);
  • Ф - годовое количество часов, когда освещалось помещение (ч).

Количество электроэнергии, которая нужна для подсветки помещения, можно вычислить по такой формуле:

А вот определить количество ламп поможет следующая формула:

Здесь появилось только одно обозначение, которое не использовалось в предыдущих вычислениях, это «j». Оно означает мощность единичной лампы (Вт).
Используя эти формулы, можно быстро и достаточно легко рассчитать расход затрат на освещение в помещении.

Вычисления для улицы

Для определения затрат, потраченных на освещение прилежащей к производству территории, стоит использовать укрупненные показатели для одного гектара площади предприятия.

Уличное освещение предприятия

В данной ситуации расход электроэнергии для светового обеспечения уличной территории предприятия осуществляется по следующей формуле:

Где:
N1 — установленная мощность для осветительных приборов конкретного вида (кВт);
m — количество типов светильников;
T1 — время горения для световых точек конкретного типа за один год (часов в год);
k3- коэффициент запаса, который учитывает изменение полезного эффекта, идущего от светильников. Он определяется в зависимости от срока эксплуатации осветительного прибора и степени его загрязненности (для уличного освещения данный коэффициент равняется 1,3);
Ц3- цена за один кВт*ч потраченной электроэнергии. Зависит от действующего тарифного плана.
Вот по такой формуле можно рассчитать затраты, идущие на освещение уличной территории предприятия.

Электроэнергия на строительной площадке потребляется для питания машин, т.е. производственных нужд, для наружного и внутреннего освещения и на технологические нужды. Расчет расхода электроэнергии надо выполнять на день максимального ее потребления по календарному графику.

Общую потребную мощность трансформаторов, необходимых для обеспечения электроэнергией строительной площадки, следует определять по формуле:

a - коэффициент, учитывающий потери мощности в низковольтной сети (a = 1.05);

cos φ - коэффициент мощности (Приложение 16);

Р с - силовая мощность машины или установки, КВт (Приложение 17);

P т - потребная мощность на технологические нужды, кВт (Приложение 17);

P ов - потребная мощность, необходимая для внутреннего освещения, кВт (Приложение 18);

k 1 ,k 2 ,k 3 ,k 4 - коэффициенты спроса, зависящие от числа потребителей (Приложение 16).

Силовую мощность машин и установок следует принимать по таблице "Ведомости потребности в строительных машинах", а потребная мощность на технологические периоды - по технологической карте. Площадь внутреннего освещения надо принимать по табл. 11, наружного - определяется по стройгенплану. Нормативы потребности электроэнергии для внутреннего и наружного освещения принимать по данным Приложения 18.

Расчет потребности строительства в электроэнергии необходимо производить по табл. 12.

Таблица 12. Ведомость расчета потребления электроэнергии

По величине требуемой мощности трансформатора надо подобрать источник электроснабжения строительной площадки (Приложение 19), указать место его установки и подключения к постоянной сети.

Пример.

Электроэнергия на строительной площадке потребляется на питание машин, т.е. производственных нужд, для наружного и внутреннего освещения и на технологические нужды.

Общая мощность, требуемая для стройплощадки определяется по формуле:

- требуемая мощность источника энергии или трансформатора, кВт.

- коэффициент, учитывающий потери мощности в сети /
/

- мощность отдельных машин и установок, кВт / Приложение 17/.

- мощность необходимая для производства отдельных видов СМР, кВт.

- мощность, требуемая для внутреннего освещения

- мощность, требуемая для наружного освещения

,
,
- коэффициенты мощности спроса, зависящие от характера загрузки и числа потребителей и степени их загрузки.

- коэффициент, зависящий от характера загрузки и числа потребителей.

Производственные мощности

Для технологических нужд используем сварочный трансформатор СТЭ-24 мощностью 54 кВт.

Наименование потребителей

на ед., кВт

Общая мощность, кВт

1. Внутреннее освещение

прорабская

мастерская

бытовые помещения

закрытые склады и навесы

2. Наружное освещение

места производства каменных работ

освещение автодорог

освещение открытых складов

Освещение строительной площадки

Общая максимальная мощность

Принимаем силовой трансформатор типа ТМ-100/6 мощностью 100 кВт, максимальное напряжение 6,3 кВ.

3.9.5 Расчет искусственного охранного освещения строительной площадки

Количество светильников для искусственного освещения надо подбирать в зависимости от освещаемой площади и мощности ламп накаливания.

Количество светильников (прожекторов) следует рассчитывать по формуле:

, где

E - нормируемая освещенность в люксах (Приложение 18);

k - коэффициент запаса, равный 1.5;

S - освещаемая площадь, м 2 ;

F - световой поток ламп накаливания (Приложение 20);

n - к.п.д. прожектора (0.35-0.38);

v - коэффициент использования светового потока (при освещении

больших площадей 0.9 малых - 0.7-0.8);

z - коэффициент неравномерности освещения (0.75).

Типы светильников и их технические характеристики можно определить по Приложению 21.

3.9.6 Организация строительной площадки и строительного хозяйства

При разработке графической части стройгенплана следует пользоваться нормами проектирования, приведенными в Приложениях 22-25. Рекомендуется следующая последовательность разработки графической части стройгенплана:

    нанести в выбранном масштабе строящееся здание и расположенные близлежащие постоянные здания и сооружения; наметить трассы постоянных дорог и инженерных коммуникаций (масштаб 1:500 - 1:1000);

    разместить у строящегося здания строительные краны и подъемники, наметить пути их перемещения; определить зоны работы кранов и подъемников и опасные зоны для нахождения людей (Приложение 22);

    привязать временные подъездные автодороги с учетом зоны действия строительных кранов;

    в непосредственной близости от подъездных дорог в зоне работы кранов разместить открытые складские площадки, установить навесы и закрытые склады; организовать площадки укрупнительной сборки конструкций;

    расположить инвентарные административные и санитарно-бытовые временные здания, производственные помещения на участке строительной площадки вне зоны действия кранов в удалении от рабочих мест не далее, м: гардеробные, умывальные, душевые - 500, помещения для обогрева рабочих - 150, уборные - 100, питьевые установки - 75. Пункты питания располагать не ближе 25 м от туалетов, выгребных ям, мусоросборников. Указать пути подъезда и подхода к временным зданиям;

    нанести трассы временных сетей электроснабжения и электроосвещения, водоснабжения, телефонизации и диспетчерской связи, подключить их к источникам потребления (Приложения 24, 25);

    с учетом выполненных проработок определить границы территории строительной площадки и ее ограничение.

На стройгенплане должны быть указаны места приема бункеров с раствором и бетоном, установки противопожарных щитов, стендов производственных показателей и информации, размещения наглядной агитации по безопасному производству работ и противопожарной техники, отмечены точки подключения временных сетей к постоянным.

Все элементы временного строительного хозяйства (дороги, коммуникации, ограждения, машины и механизмы и др.) на стройгенплане следует показывать условными обозначениями с их расшифровкой в табл. 13 (согласно Приложение 26).

Таблица 13. Условные обозначения

В пояснительной записке в этом разделе следует обосновать принятые решения по размещению временных объектов и сооружений на строительной площадке с учетом правил техники безопасности, охраны труда и пожарной безопасности. Надо, также, описать конструкцию временной автодороги, при необходимости привести расчет привязки подкрановых путей для башенного крана и мест проходок и стоянок для самоходного крана, расчет радиуса опасной зоны работы крана и другие расчеты.

Необходимо описать требуемые мероприятия по технике безопасности при организации стройплощадки и осуществления строительства в соответствии со СНиП III-4-80** "Техника безопасности в строительстве".

Следует указать на требования по ограждению площадки и опасных зон, организация стока с поверхности, устройству пересечений автомобильных и железных дорог, складированию и хранению материалов и конструкций, соблюдению противопожарных мероприятий (установка гидрантов, противопожарных щитов, запасных резервуаров). Указываются места проходов и проездов в опасных зонах, наглядной агитации по безопасности труда и противопожарной технике.

3.9.7 Проектирование графика подготовительных работ

К ним относятся работы по срезке растительного слоя грунта, планировке площадки строительства, установке временных зданий и сооружений, устройству ограждения строительной площадки, прокладке дорог, сетей энергоснабжения и другие виды работ, которые должны быть выполнены до начала основного периода строительства (см. раздел 3.9 настоящих методических указаний).

Со ссылкой на положения ДБН 3.01.01-85 "Организация строительного производства" в пояснительной записке дается описание работ по подготовке строительного производства и последовательность их выполнения, выделяются внутриплощадочные работы, выполняемые в подготовительный период.

График работ подготовительного периода необходимо строить на основе определенных номенклатуры и объемов работ и укрупненных норм затрат труда на устройство временных сооружений.

Номенклатуру и объемы работ следует определять по данным ранее выполненных расчетов (табл. 10, 11) и замерами на стройгенплане (протяженность дорог, сетей водо- и энергоснабжения, ограждения, площади складских площадок, временных зданий и сооружений и т.п.). Расчет и проектирование графика необходимо выполнять в табличной форме (табл. 15).

Таблица 15. График работ подготовительного периода

Наименование

Трудозатраты,

Продол-житель-

Вертикальная планировка площадки

Прокладка электрокабеля

Устройство воздушной линии низкого напряжения

Устройство трансформатор-ной подстанции

Установка прожекторов

Устройство внутреннего освещения

Прокладка водопровода из стальных труб

Устройство временных дорог

Установка временных зданий

Установка деревянного забора

Устройство навеса

Прокладка канализации

3.9.8 Расчет технико-экономических показателей

Технико-экономические показатели стройгенплана должны включать:

    площадь стройгенпана, м 2 (F сгп.);

    площадь застройки, м 2 (F з,);

    площадь складов, м 2 (F ск,);

    площадь временных зданий, м 2 (F вр.);

    площадь автодорог и площадок, м 2 (F д);

    показатель компактности стройгенплана: k 1 = F з / F сгп ;

    показатель использования территории:

Литература

    ДБН А.3.1-5-96. Организация строительного производства. – Киев, 1996.

    ДБН Д.2.2-99 Ресурсные элементные сметные нормы Украины на строительные работы. – Киев, 2000.

    СНиП 1.04.03-85. Нормы продолжительности строительства и задела в строительстве предприятий, зданий и сооружений. Госстрой СССР, Госплан СССР. - М.: Стройиздат, 1987. - 522 с.

    Дикман Л.Г. Организация и планирование строительного производства. М.: Высшая школа, 1988. - 559 с.

    Проектирование организации промышленного строительства. Краткий справочник /Е.П. Уваров, С.И. Уманский, М.С. Розенфельд, Г.И. Апышков. / - К. Будiвельник, 1984. - 128 с.

    Шахпоронов В.В. Организация строительного производства. Справочник строителя. - М.: Стройиздат, 1987. - 450 с.

    Шрейбер А.К. Организация и планирование строительного производства. - М.: Стройиздат, 1987. - 368 с.

    Инженерная подготовка строительного производства / Т.Н. Цай, Б.Ф. Ширшиков и др. – М: Стройиздат, 1990.-352 с.

    Сукачев И.А. «Организация, планирование и управление сельскохозяйственным строительством» - Москва стройиздат 1989г.

    Цай Т.Н., Гробовой П.Г. и др. Организация строительного производства – Москва, Издательство ассоциации строительных вузов, 1999 – 430с.

    Побожный В.А. и др. Расчет и оптимизация сетевых графиков строительства – Москва, Издательство ассоциации строительных вузов, 2001 – 240с.

Приложение 1 ­

Министерство аграрной политики Украины

Луганский национальный аграрный университет

Кафедра технологии и организации

строительного производства

5. Расчет временного электроснабжения.

Исходными данными для организации временного электроснабжения являются виды, объемы и сроки выполнения СМР, типы строительных машин и механизмов, площадь временных зданий и сооружений, протяженность автодорог, площадь строительной площадки, сменность работ.

Проектирование электроснабжения осуществляется следующим образом:

выявляются потребители и их мощности,

определяется требуемая мощность трансформатора,

проектируется схема электросети.

Необходимая мощность на технические нужды определяется видом и продолжительностью технологических процессов, потребляющих электроэнергию.

Наружное и внутреннее освещение строительной площадки выполняется согласно нормам освещенности участков строительной площадки и выполняемых работ.

Расчетная трансформаторная мощность, кВт, при одновременном потреблении электроэнергии всеми источниками определяется по формуле:

P=1,1*(S((Рс*К1) /Сosj) +S((Рt*К2) /Сosj) +S(Ров*К3) +S(Рон*К3))

1,1 - коэффициент, учитывающий потери мощности в сети Рс - силовая мощность машины, установки Рt - потребная мощность на технологические нужды Ров - потребная мощность, необходимая для внутреннего освещения Рон - потребная мощность, необходимая для наружного освещения К1, К2, КЗ, К4 - коэффициенты спроса, зависящие от числа потребителей cos ф - коэффициент мощности, зависящий от характера, количества и загрузки потребителей силовой энергией.

Табл.5 Расчет потребности во временном электроснабжении

Наименование потребителей Ед. измер. Кол-во Удельн. мощн. на ед. изм. Коэф-т спроса, kc Коэф-т мощности cosj Трансформ, мощн-ть, кВ*A
Силовая электроэнергия
Бетононасос шт. 1 17 0,5 0,6 14,16
Экскаватор шт. 1 80 0,5 0,6 66,66
Башенный кран шт. 1 71 0,5 0,7 50,7
Подъемник мачтовый шт. 1 5 0,3 0,7 2,14
Электросварочный аппарат шт. 1 15 0,5 0,4 18,75
Электротрамбовка шт. 1 1 0,1 0,4 0,25
Краскопульт шт. 1 0,5 0,1 0,4 0,125
Вибропогружатели шт. 1 40 0,5 0,6 33,33
S=186,115
Технологические нужды
Трансформаторный электропрогрев грунта м3 1400 15 0,65 0,7 19,5
S=19,5
Внутреннее освещение
Прорабская, бытов. помещения м2 195,2 0,015 0,8 1 2,34
Душевые и уборные м2 45,8 0,003 0,8 1 0,11
Склады закрытые м2 11,2 0,015 0,35 1 0,0588
Навесы м2. 363 0,003 0,35 1 0,381
S=2,89
Наружное освещение
Территория строительства 100м2 92,24 0,015 1 1 1,3836
Склады открытые 100м2 3,962 0,05 1 1 0, 1981
Основные дороги и проезды км 0, 204 5,0 1 1 1,02
Аварийное освещение км 0, 204 3,5 1 1 0,714
S=3,3157
ИТОГО: 211,821

Общая трансформаторная мощность составляет:

Р = 1,1(186,115 + 19,5+ 2,89+3,3157) = 233,003 кВ*А

Выбираем тип трансформатора: инвентарный (ПТИП).


Рекомендуемая литература

1. Афанасьев В.А. Поточная организация строительства. Л.: Стройиздат, 1990.303 с.

2. Дикман Л.Г. Организация и планирование строительного производства: Учебник для строительных вузов и факультетов.3-е изд., перераб. и доп. М.: Высш. шк., 1988.553 с.

3. Дай Т.Н. Организация строительного производства: Учебник для вузов. М.: Изд-во АСВ, 1999.432 с.

4. Организация строительного производства: Справочник строителя /Под ред.В. В. Шахнаронова. М.: Стройиздат, 1987.460 с.

5. Реконструкция и капитальный ремонт жилых и общественных зданий: Справочник производителя работ /В Л. Вольсон, В.А. Ильяшенко, Р.Г. Коми-сарчик. М.: Сгройиздагг, 1999.252 с.

6. Определение объемов строительных работ: Справочник. М.: Стройиздат, 1991.63 с.

7. Формирование и оптимизация объектных потоков на ЭВМ: Метод, указания к выполнению курсового и дипломного проекта /СПбГАСУ; Сост. В.Ф. Александрова. СПб., 1999.7 с.

8. Определение продолжительности выполнения отдельных видов строительно-монтажных работ: Метод, указания /ЛИСИ; Сост. Г.В. Замятин, Л.М. Колчеданцевю. Л., 1990.24с.

9. СНиП 11.01-95. Инструкция о порядке разработки, согласования, утверждения и составе проектной документации на строительство предприятий, зданий и сооружений /Минстрой РФ, М.: ГП ЦПП, 1995.13с.

10. СНиП 3.01.01-85*. Организация строительного производства /Госстрой РФ.М., 1995.55 с.

11. СНиП 1.04.03-85*. Нормы продолжительности строительства и задела в строительстве предприятий, зданий и сооружений /Госстрой РФ. М.: Стройиздат, 1991.552с.

12. СНиП III.4-80*. Техника безопасности в строительстве /Госстрой РФ, ГП ЦПП.М., 2000.88 с.

13. СНиП 12.03-99. Безопасность труда в строительстве /Госстрой РФ, ГП ЦПП.М., 1999.56 с.

14. ЕНиР. Общая часть. М.: Прейскурантиздат, 1987.37 с.

15. Проектирование календарных планов строительства объектов: методические указания. Александрова В.Ф., Ларионова В.М. / СПбГАСУ - СПб, 2000

С применением систем календарного планирования и контроля, ратифицирует наиболее оптимальные внутрикорпоративные стандарты управления проектами. Интеграция СУП с другими компонентами корпоративных информационных систем Успешное функционирование системы управления строительством, основанной на использовании программных средств календарного планирования и контроля, существенным образом зависит...

... – супесь легкая, II группа трудности разработки. 1.3 Характеристика грунтов по трассе В результате анализа продольного профиля определяют виды грунта, встречающиеся в районе строительства участка дороги, и определяют их основные физико-механические показатели оптимальную влажность, категорию по трудности разработки, пригодность грунтов для сооружения земляного полотна. Эти данные приведены в...

4.5 Расчет потребности строительства во временном электроснабжении и освещении строительной площадки

Порядок проектирования временного энергоснабжения следующий.

Обладая исходной информацией о потребителях (количество машин и механизмов, потребляемая ими мощность; номенклатура работ, требующих затрат электроэнергии; количество и типы осветительных приборов и потребляемая ими мощность), производят расчет электрической нагрузки, в соответствии с которой определяют число и мощность трансформаторных подстанций. Далее располагают на стройгенплане трансформаторные подстанции, силовые и осветительные сети, инвентарные электротехнические устройства; составляют схему электроснабжения.

Электроэнергия расходуется:

· на производственные нужды;

· технологические нужды;

· бытовые нужды;

· наружное освещение.

Расчет расхода электроэнергии по видам потребителей рекомендуется производить в табличной форме.

Таблица 7 - Расчет силовой мощности

Таблица 8 - Расчет потребляемой мощности на внутреннее освещение

Таблица 9 - Раcчет потребляемой мощности на наружное освещение

На основе полученных значений мощности по видам потребителей осуществляется расчет нагрузок по установленной суммарной мощности потребителей и коэффициентам спроса, дифференцированным по видам потребителей. Расчет производится по формуле

где б - коэффициент, учитывающий потери в сети в зависимости от протяженности, сечения и т.п. (принимают б =1,05-1,1); соs ц - коэффициенты мощности, зависящие от вида потребителя; К 1 , К 2 , K 3 , К 4 - коэффициенты спроса, зависящие от числа потребителей (соs ц и К 1-4 принимается по приложению Н);

К 1 Р с - мощность силовых потребителей, кВт;

К 2 Р т - мощность для технологических нужд, кВт;

К 3 Р ов - мощность устройств освещения внутреннего, кВт;

К 4 Р он - мощность устройства освещения наружного, кВт.

Р р в рассмотренном примере определяется:

Р р = 1,1* (+ + + 0,8* 4,647+ 1 * 24,42)=145,5 кВт;

По полученному значению подбираем трансформаторную подстанцию СКТП-180/10/6/0,4/0,23 мощностью 180 кВ.

Следующим этапом paсчета является проектирование освещения строительной площадки. Освещение строительных площадок осуществляется прожекторами с лампами накаливания мощностью до 1,5 кВт, устанавливаемыми группами по 3, 4 и более, а также осветительными приборами для освещения рабочих мест. Для установки источников света используют имеющиеся строительные конструкции, стационарные и инвентарные мачты, опоры, переносные стойки. Для повышения эффективности системы освещения источники тока следует размещать с соблюдением определенных правил: при ширине площадок более 150 м - прожекторы с лампами накаливания и осветительные приборы с ксеноновыми лампами большей мощности;

· при ширине площадок более 300 м - осветительные приборы с галогенными или ксеноновыми лампами большей мощности;

· высота установки приборов принимается максимальной, по возможности на уровне крыши возводимого здания;

· расстояние между прожекторами не должно превышать четырехкратной высоты их установки;

· световой поток должен быть направлен в двух-трех направлениях. Расчет числа прожекторов производят по формуле

n = p х E х S/P л,

где р - удельная мощность (см. приложение В); Е - освещенность, лк (см. приложение В); S - площадь, подлежащая освещению; Рл - мощность лампы прожектора.

а) для охранного освещения при площади, подлежащей освещению: n = 7 шт, принимаем для размещения на стройгенплане прожектора ПЭС - 35 с мощностью ламп в 200 Вт;

б) для освещения мест производства бетонных работ S = 180 м 2, n = 4 шт, принимаем для размещения на стройгенплане прожекторов ПЭС - 35 с мощностью ламп в 200 Вт.

Организация проекта производства работ по прокладке вентиляционных систем

Вода на строительной площадке расходуется на санитарно-бытовые нужды, на производство строительно-монтажных работ, для строительных машин и механизмов, а также учитывается потребление воды в случае возникновения пожара...

Организация строительства жилого микрорайона и строительный генеральный план территории строительства

Расчет числа прожекторов ведется в соответствии с формулой: N = p E S P (2), где р - удельная мощность, Вт, Е - освещенность, лк, S - величина площадки подлежащей освещению. Принимаются типовые прожекторы ПЗС - 35(p = 0,30 Вт/м2 лк, P = 1 кВт) Таблица 8...

Организация строительства жилых микрорайонов градостроительными комплексами

Расчет числа прожекторов ведется через удельную мощность прожекторов по формуле: n = р ЕS/Рл, где р - удельная мощность, Вт; Е - освещенность, лк; S - величина площадки, подлежащей освещению, м2; Рл - мощность лампы прожектора, Вт...

На строительной площадке применяются временные водопроводные сети производственного, хозяйственно-питьевого и противопожарного назначения...

Поточная организация строительства одноэтажного трехпролетного промышленного здания

Общая потребность в электроэнергии определятся в кВа на период максимального расхода и в часы наибольшего ее потребления на основании данных о расходе на наружное и внутреннее освещение. Технологические нужды строительства...

Проектирование 2-х этажного спортивно-оздоровительного комплекса с цокольным этажом

Расчет потребности в воде ведется на период строительства с максимальным водопотреблением на производственные, хозяйственные и противопожарные нужды...

Проектирование организации строительства зданий

Определяется мощность сети наружного освещения Wн.о., кВт, по формуле: Wн.о.=Кс*?Рн.о. (23) Где, Рн.о. - электроэнергия, необходимая для освещения проходов, проездов, складов и рабочего места, кВт...

Промышленное и гражданское строительство

2. Технико-экономические показатели. 3. Список использованной литературы. Графическая часть курсового проекта выполняется карандашом...

Промышленное и гражданское строительство

Расчет потребности во временном водоснабжении выполняется по укрупненным показателям на 100 млн. руб. сметной стоимости годового объема СМР и дополняется расчетом расхода воды для противопожарных целей по площади строительного комплекса...

Разработка календарного плана строительства объекта

Расчет количества потребителей временной электроэнергии и мощности электродвигателей строительных машин...

Разработка основных документов проекта производства работ по возведению гражданского здания

Вода используется для производственных и хозяйственно-бытовых нужд. Снабжение строительной площадки будет производиться от имеющегося городского водопровода. Расход воды на нужды строительства приведен в табличной форме (табл. 3.7.1) Таблица 3...

Расчет технико-экономических показателей здания магистральной насосной. Первый пусковой комплекс

Строительство системы водоснабжения населенного пункта

Водоснабжение предназначено для обеспечения производственных, хозяйственно-бытовых, противопожарных нужд строительной площадки. Основными потребителями воды на строительной площадке являются строительные машины...

Технология и организация возведения зданий

На строительной площадке, в соответствии с , запроектировано два вида освещения (рис. 6).Общее равномерное освещение Ен=2 лк, на всю территорию площадки, зона 1. Локальное...

Проектирование системы электроснабжения базируется на соблюдении следующих нормативных документов:

* “Правила устройства электроустановок” (ПЭУ);

* “Правила технической эксплуатации электроустановок потребителей” (ПТЭ);

* “Правила техники безопасности при эксплуатации электроустановок потребителей” (ПТБ);

* СНиП 3.05.06-85 Электротехнические устройства.

* СНиП III-4-80 Техника безопасности в строительстве;

Расчёт потребности в электроэнергии

Расчёт потребности в электроэнергии в ПОС

Потребность в электроэнергии определяется в соответствии с РН ч.1.

Потребность в электрической мощности определяется в зависимости от территориального расположения строительства, величины годового объёма СМР и отрасли строительства по формуле:

Рп=(С/К)*К1*Р;

Где С — годовой объём СМР в млн. Руб.;

К — коэффициент приведения сметной стоимости строительства в данном территориальном поясе к сметной стоимости для первого территориалого пояса, определяемый по Прилож. 1 РН ч.1;

К1 — коэффициент, учитывающий изменение сметной стоимости строительства в зависимости от района строительства, средней температуры наружного воздуха и продолжительности отопительного периода, значение которого изменяется от 0,78 до 1,58 для различных территориальных поясов (см. Табл. 1 РН ч.1);

Р — потребность в электроэнергии (кВ*А) для отраслей промышленности с учётом Cosf электроприёмников (электродвигатели для привода машин и оборудования, электрическое освещение, электрическая сварка, электропрогрев батона, кладки, грунта, прогрев трубопроводов), коэффициентов спроса, а также потерь в сетях и на трансформацию (см. табл. 2 и табл. 3 РН ч.1)

Расчёт потребности в электроэнергии в ППР

В ППР для определения расчетных нагрузок на шинах низшего напряжения питающий трансформаторной подстанции используется метод коэффициентов спроса, дающий погрешность +10%.

В соответствии с этим методом все токоприемники разбиваются на m группы с одинаковым режимом работы (паспортной относительной продолжительностью включения Пвп).

Для двигателей повторно — кратковременного режима работы (ПВ<1), номинальная мощность приводится к длительному режиму (ПВ=1) по формуле:

Где Рn, ПBn-сооответственно паспортная мощность и паспортная продолжительность включения, ориентировочные данные по ПB помещенные в таблице 3.

Для сварочных машин номинальная мощность (кВТ) определяется по формуле

Где Sn-паспортная мощность (кВ*А) и паспортное значение cos j n.

Величина расчетной активной нагрузки Ррn для групп n однородных по режиму приемников определяется выражением

Где: Pn — номинальная (установленная) мощность токо-приемников строительных машин, определяется по паспортным данным или ориентировочно по табл. 1 , для наружнего освещения — по удельным показателям мощности (табл. 2);

Kc — коэффициент спроса для группы потребителей более двух определяется по табл. 3, при наличии одного или двух потребителей коэффициент спроса необходимо увеличить до 0,7…1.

Таблица 1.

Общая установленная мощность по видам потребителей

Наименование машин

Установленная мощность электродвигателей, кВт

Гусеничные дизель-электрические и электрические краны типа МКГ, РДК, ДЭК, КГ, СКГ и др. грузоподъёьностью

От 20 до 50 т

От 55,3 до 85

От 60 до 100 т

От 88,3 до 118

Свыше 100 т

От 132 до 220

Пневмоколёсные дизель-электрические и электрические краны типа КС, МКП, МКТ, и др. грузоподъёмностью

От 13 до 50 т

От 34,5 до 165

От 63 до 100 т

Башенные передвижные краны серии МСК с грузовым моментом

От 1000 до 2000 кНм

От 40,5 до 62,5

Башенные передвижные краны серии КБ с грузовым моментом

До 1250 кНм

От 1250 до 2000 кНм

От 57 до 116,5

От 2400 до 2800 кНм

От 63,5 до 182

От 3200 до 4000 кНм

Башенные приставные краны типа КБ с грузовым моментом

От 2000 до 3200 кНм

От 75 до 137,2

Козловые краны типа ККС, КК, К с высотой подъёма до 11,5 м грузоподъёмностью

От 10 до 20 т

От 30 до 50 т

От 81 до 82,5

Козловые краны типа КП, УК, УКП с грузоподъёмностью

От 15 до 50 т

От 59 до 66,5

Подъёмники грузовые типа ГП грузоподъёмностью

От 320 до 500 кг

Свыше 500 кг

Подъёмники грузопассажирские типа

Мостовые краны

Сварочные трансформаторы типа СТЭ-34 (мощностью 408 кВА)

Установка для электропрогрева 500 кВА

Таблица 2.

Удельные показатели мощности.

Наименование потребителей

Средняя освещенность лк

Удельная мощность на

1м²площади.

Территория строительства в районе производства работ

Главные проезды и проходы

Второстепенные проезды и проходы

Охранное освещение

Аварийное освещение

Места производства механизированных земляных и бетонных работ

Монтаж строительных конструкций и каменная кладка

Свайные работы

Отделочные работы

Бетонные, растворные и дробильно-сортировочные заводы, сушила, компрессорные и насосные станции, котельные, гаражи, депо

Конторские и общественные помещения

Общежития и квартиры

Таблица3.

Значение коэффициентов спроса и коэффициентов мощности токопроизводства.

Электроприемники.

Коэффициент мощности.

ПВ в долях

Экскаваторы с электроприводом

Растворные и бетонные узлы.

Механизмы непрерывного транспорта (транспортёры, шнеки).

Краны башенные.

Лебёдки приводные

Электросварочное оборудование:

Однопостовые сварочные преобразователи,

Сварочные трансформаторы,

То же типов ТСП-1,ТСП2,

Однопостовые сварочные выпрямители,

6-постовые сварочные выпрямители.

Оборудование, используемое при арматурных работах.

Водопонизительные установки.

Вибраторы переносные.

Электроинструмент

Сушильные шканагревательные приборы.

Котельные.

Установки электропрогрева бетона

Электрическое освещение внутреннее,

То же наружное.

Насосы, вентиляторы, компрессоры

Расчетная активная нагрузка всех m групп приемников определяется как сумма расчетных активных нагрузок всех групп.

Расчетная реактивная нагрузка Q р(квар) определяется аналогично

Средневзвешенный расчетный коэффициент мощности cos с определяется по tg с из выражения

Суммарная нагрузка S (кВ* А) по строительной площадке в целом (нагрузка на шинах нисшего напряжения питающей подстанции) с учетом несовпадения по времени максимумов нагрузки отдельных групп потребителей (Крm =0,8¼0.9) определяется по формуле

Расчет суммарной нагрузки S может быть выполнен по упрощенной формуле

где L-коэффициент, учитывающий потери в сети, принимаемый равным 1,05¼1,1;

Рс, Рt, Ров, Рон — соответственно установленная мощность (кВт) силовых потребителей, для технологических нужд, освещения, устройств наружного освещения.

Схемы электроснабжения.

Схемы электроснабжения строительных площадок должны соответствовать ожидаемой динамике электрических нагрузок и их распределению по территории строительства, обеспечить минимальные расходы проводов и потери электроэнергии, предусматривать широкое использование инвентарных переносных и передвижных устройств, в том числе комплексных трансформаторных подстанций

Электроснабжение может быть осуществлено от высотных сетей энергетических систем, электростанции различных ведомств, а так же собственных электростанций.

Схемы электроснабжения промышленных предприятий и строительных площадок делятся на схемы внешнего и внутреннего электроснабжения. Они обычно изображаются в однолинейном изображении, три и более провода изображаются одной линией, трехполюсный рубильник — однополюсный и т. д.

Схемы внешнего электроснабжения

Связи с энергосистемой определяются рядом факторов, важнейшими из которых являются:

* наличие электросетей энергосистем в районе строительства и их отдаленность от последнего;

* требования к надежности питания приемников;

* выбранные источники электроснабжения;

* размером мощности потребления;

* сроком обеспечения электроснабжения.

Число и напряжение питающих линию зависит от наличия или отсутствия на строительстве Приемников первой категории , а также от Расположения объектов строительства относительно источников электроснабжения. Внешнее электроснабжение может осуществляться от энергосистемы на различном напряжение; от 6 до 1150 кВ (в зависимости от дальности передачи и необходимой мощности).

Ориентировочная передаваемая мощность и расстояние передачи электроэнергии от районных высоковольтных сетей составляют:

До 2000 кВт при напряжении 6 кв -5 — 10 км;

До 3000 кВт при напряжении 10 кв — 8 — 15 км;

Применение схемы питания по одной тупиковой линии (рис.1) допустимо в тех случаях, когда на объекте отсутствуют приемники первой категоии.

Схема питания с ответвлением от одной линии (рис.2) является разновидностью схемы (рис.1). Она применяется, если недалеко от проекта проходит линия и сечение ее проводов достаточно для присоединения к ней дополнительной нагрузки, имеется резерв мощности у источника питания, а условие эксплуатации позволяет такое присоединение.

Схемы внутреннего электроснабжения

(Распределение энергии на напряжение. до 1000 в)

На выбор схемы внутреннего электроснабжения влияет ряд факторов, важнейшими из которых являются:

* необходимая степень надежности;

* экономичность как по приведенным затратам, так и по расходам проводникового материала;

* удобство и надёжность эксплуатации;

* расположение приемников внутри объекта;

* схемы внешнего электроснабжения;

* мощность отдельныхприемников;

* надежность защиты от перегрузок;

* характер окружающей среды.

Схемы внутреннего электроснабжения представляют собой сочетание отдельных элементов для которых приняты следующие определения:

¨ Питающие линии предназначены для передачи электроэнергии от распределительного устройства (щита) к распределительному пункту (РП) или отдельному электроприемнику;

¨ Магистральные линии предназначены для передачи электроэнергии к нескольким распределительным пунктам или электроприемникам, присоединенным к линии в разных точках;

¨ Ответвление — линии, отходящие от магистралей и предназначенные для передачи электроэнергии к одному распределительному пункту или электроприемнику;

¨ Питающая сеть — питающие линии, магистрали и ответвления от магистралей;

¨ Распределительная сеть — все линии, питающие вводы к электроприемникам;

Схемы распределительных сетей строительных площадок могут быть радиальные, магистральные и смешанные. При выборе схемы надлежит стремиться к наименьшему количеству промежуточных звеньев и ступеней (по напряжению ).

Радиальные схемы распределения электроэнергии

Такие схемы применяются главным образом в тех случаях, когда электроприемники (ТП) расположены в различных направлениях от центра питания(ГТП или ГРП). Они могут быть одноступенчатыми и двухступенчатыми. Одноступенчатые схемы применяются на малых строительных площадках, на которых распределяемая мощность и территории невелики.

Магистральные схемы распределения

Магистральной называется схема питания нескольких подстанций от одной магистрали, имеющей общий отключающий аппарат со стороны питания. Эти схемы применяются в тех случаях когда: группы их расположены в одном и том же направлении по отношению к подстанции,

На рис. 4 изображена схема магистральная кольцевая разомкнутая с потребной мощностью более 500 кВ*А.

На рис. 5 изображена схема, которая может быть использована при концентрированных нагрузках на малой строительной площадке. Перемычки на низкой стороне дают возможность при уменьшении нагрузок (ночное время, выходной день) отключать часть подстанций, а питание потребителей переводить на один трансформатор.

На рис, 6 показана схема, где источником электроснабжения служит собственная электростанция, сооружаемая по возможности в центре нагрузок.

Схемы питания двумя параллельными линиями , присоединёнными к разным и к разным секциям питающего распределительного устройства, применяется при наличии на объекте большего числа ответственных приемников. Разновидностью магистральной схемы с одиночным или двухсторонним питанием питанием являются магистральные кольцевые схемы (рис.4)..

Нецелесообразность постройки второй линии зависит от расстояния и определяется экономическим расчетом. Может оказаться более выгодным обеспечить резервное питание от собственных электростанций объекта.

Источники электроэнергии.

Для временного электроснабжения в качестве источников электроэнергии принимаются:

· электрические линии и устройства (трансформаторные подстанции, распределительные пункты) государственной энергосистемы напряжением 35,10 и 6 кВт;

· — энергосистемы, ближайших промпредприятий;

· — собственные инвентарные электростанции

Наиболее предпочтительными (экономически целесообразными) источником электроэнергии являются постоянные (существующие или построенные в подготовительный период) трансформаторные подстанции находящиеся на строительной площадке или в непосредственной близости от нее.

Когда таких трансформаторных подстанций (сетей или распределительных пунктов) поблизости нет, вопрос об источнике электроэнергии (собственная электростанция или отвод от районной высоковольтной сети) делается путем экономического расчета.

Для понижения напряжения электроэнергии с 35 , 10 и 6 кВ до величины 0,4/ 0,23кВ, необходимой для питания строительных машин и освещения применяются инвентарные трансформаторные подстанции (см. табл.4).

Таблица 4.

Инвентарные трансформаторные подстанции.

Мощность в кВА

Напряжение, кВ

Габаритные размеры (длина, ширина, высота) в мм

Масса, кг

КТПН 62-320/180

(С универсальным вводом)

4940х3370х2270

(С универсальным вводом)

2695х2520х5120

2710х1300х1150

1198х5800х5050

4710х2050х3500

СКТП-100/6-10

2300х1700х2400

СКТП-160/6-10

2760х1900х2630

СКТП-250/6-10

2760х1900х2630

СКТП-630/6-10

2690х3400х1800

СКТП-750/6-10

2960х3450х1808

СКТП-1000/6-10

2960х3450х1808

В тех случаях, когда на площадке нет возможности получить электроэнергию от энергосистемы или ближайшей электрической станции в качестве источника электроснабжения используют временные инвентарные электростанции. Параметры некоторых из них приведены в таблице 5.

Таблица 5.

Основные показатели передвижных электростанций.

Марка станции

Мощность

Место монтажа

Габариты, м

Напряжение, В

Малые и средние электростанции

Рама с кожухом

Рама с кожухом

Рама с кожухом

Автоприцеп

Автофургон

Автофургон

Автофургон

Автофургон

Вагон, Автофургон

Большие электростанции

Автофургон, вагон

Железнодорожный вагон

Длина вагона 18,34

Линии электропередачь и инвентарные электрические устройства.

Основными элементами электрических сетей являются линии электропередач (ЛЭП) и электрические устройства, служащие для ввода, распределения, учета электроэнергии и защиты электросетей от перегрузок.

В строительстве применяются воздушные и кабельные линии электропередач напряжением 6,10 и 35 кВ для питания трансформаторных подстанций и напряжение 380, 220, 127, 36 и 12 В для питания потребителей (электродвигателей машин, сварочных трансформаторов, осветительных приборов и др.). Понижение напряжения в сети до 12¼36 В выполняется введением вторичных трансформаторов.

Воздушные электролинии получили широкое распространение вследствие их меньшей стоимости по сравнению с кабельными, простоты обнаружения мест повреждений и удобства ремонта.

Недостатками воздушных линий являются возможность повреждения их в результате внешних воздействий ветра, гололеда, ударов молний, а так же опастности повреждения током людей при повреждениях.

Воздушные линии электропередач выполняют из однопроволочных или многопроволочных неизолированных или изолированных (на участках возможного поражения людей током). Наименьшее сечение проводов воздушных линии напряжением более 1 кВ: из меди, стали и сталеалюминия — 25 мм, из алюминия и его сплавов-35 мм.

Для питания электроосвещения, силовых и технологических приемников небольшой мощности (до 100-150 кВт), применяют четырех проводные (трехфазные) линии напряжением 380/220 В. Для подвески проводов применяются инвентарные железобетонные и деревянные опоры из бревен длинной 7¼9 м и толщиной в отрубе 14 ¼18 см. Семиметровые бревна устанавливают на железобетонные основания (пасынки) . Глубину заложения принимают обычно равной 1/5 длины столба.

Расстояние между опорами принимают из условия прочности опор, но не более 30 м.

Минимальные расстояние от воздушных ЛЭП напряжением до 1000 В при наибольшей стреле провеса должна составлять, м:

* — до поверхности в населенной местности — 6, в ненаселенной местности — 5

* — до головки рельса железной дороги -7,5;

* — до полотна автодороги — 7;

* — до пересечению его слаботочными линиями -1,2¼1,5.

Изолированные провода должны быть подвешены на высоте не менее 2,5 м над рабочим местом, 3 м — над проходами и 5 м — над проездами, причем при высоте до 2,5 м электропровода заключают в трубы или короба. Запрещается прокладывать воздушные сети над зданиями (кроме несгораемых производственных при расстояниях от нижнего провода с напряжением до 35 кВ до крыши не менее 3 м.

Пересечение воздушных линий Допускается :

* — если верхняя линия пересекает нижнюю на расстоянии не менее 6 м от опоры;

* — если провода линии более высокого напряжения проходят над линией меньшего напряжения;

* — если расстояние между проводами пересекающихся линий не менее 2 м.

Параллельная трассировка воздушных линий напряжением до 1 кВ с линиями более 1 кВ допускается на расстоянии не менее 2,5 м для напряжения от 2¼20 кВ и 4 м для напряжения 35кВ.

Наименьшее расстояние по горизонтали от окон, балконов и т. д. до проводов воздушной ЛЭП напряжением до 1 кВ (при наибольшем их отклонении)принимается равным 1,5 м от глухих стен -1 м.

При напряжении 2¼20 кВ расстояние проводов до выступающих частей зданий принимается не менее 2 м.

Магистральные воздушные ЛЭП прокладываются вдоль главных проездов с целью использовать опоры под установку осветительных прибор.

Кабельные линии отличаются высокой надежностью, они не загромождают строительную площадку. Вопросы прокладки кабельной линии решаются на использовании технико-экономических расчетом с учетом развития сети, ответственности и назначения линии, характера трассы, способа прокладки, конструкций кабелей и т. д. Трассу кабельной линии выбирают с учетом наименьшего расхода кабеля и обеспечения его сохранности от механических повреждений, коррозии, вибрации, перегрева и т. Д.

Кабели прокладываются:

* в траншеях с глубиной заложения 0,7 м от планировочной отметки, а при пересечении и транспортных путей — не менее 1 м;

* по поверхности земли (или на низких опорах) в местах, где исключена вероятность его повреждения;

* по высоким опорам при подвеске его к канату в случае нецелесообразности подземной прокладки.

При прокладке кабелей принимаются следующие минимальные расстояния (в свету) по горизонтали в м между кабелем напряжением до 1000В и сооружениями:

* — до фундаментов и стен зданий 0,6;

* — до водопровода и канализации 0,5;

* — газопровода-1

* — теплопровода-2

* — оград и столбов-0,6

Для питания передвижных механизмов используются гибкие

Кабели в герметической из полихлорвинила или ненрита (светостойкой резины) с медными проводами в резиновой изоляции.

Инвентарные устройства , применяемые для электросети строительных площадок позволяют значительно снизить трудозатраты на временные сети и повысить электробезопасность их работы. К инвентарным устройствам относятся распределительные устройства для сетей с напряжением 6-10 кВ, вводно-распределительные и распределительные устройства на сетях напряжением до 1000 В.