Как найти фазу без индикаторной отвертки. Способы определения проводов фазы и нуль

Проверить функциональные возможности электросети в квартире или частном доме можно различными способами. С финансовой точки зрения оптимальным вариантом будет индикаторный пробник, который способен заменить мультиметр в домашних условиях.

При выполнении монтажных работ с розетками и выключателями освещения часто возникает необходимость найти фазу и ноль. Конечно для опытных электриков, такая задача пустяк, но для тех, кто мало знаком с правилами устройства электрических сетей, этот вопрос может загнать в тупик.

Индикаторная отвертка. Нюансы в использовании

Учитывая количество электроприборов в каждой квартире, этот прибор должен быть у каждого. С его помощью будет возможно определить наличие тока в любом проводнике, розетке или электрощитке.

Конструкция индикаторной отвертки

Конструкция обыкновенного пробника в виде отвертки простое:

  • щуп, исполняет роль проводника;
  • к жалу подключен резистор, он нужен для понижения силы тока до безопасной для человеческого организма величины;
  • далее размещен светодиод, который соединяется с контактным пятачком, выведенным на торец отвертки;
  • корпус изготавливают из прозрачного пластика, это позволяет увидеть загорание светодиода.


Фаза и ноль в отвертке

Найти фазу и ноль индикаторной отверткой не составит труда. Когда щупом прикоснутся к проводу под напряжением, ток пройдет по стержню, далее через резистор, приведет светодиод к свечению, а затем попадет на руку, которая касается металлической пластины. Ток пройдет и сквозь тело человека, который производит данную операцию, а затем уйдет землю.

Сам человек не ощутит проходящий через него ток, так как его величина слишком мала.

Область применения

Любые работы, которые касаются электропроводки, должны быть безопасными. Для этой цели каждый должен иметь в доме этот необходимый инструмент.

Этот прибор может быть использован для таких целей:

  • проверить к какому контакту розетки или выключателя подведен фазовый проводник;
  • когда розетка удлинителя не работает, можно проверить все гнезда пробником;
  • с ее помощью можно выяснить, куда подведена фаза в патроне: к центральному контакту или к резьбе;
  • выяснить находится ли электроприбор под напряжением;
  • прикасаясь жалом инструмента к центральному контакту розетки, можно проверить исправность заземляющего проводника.

Важно! Если электросеть с переменным током, то прижимать палец к пластине нет необходимости!

Типы отверток

Новые модели отверток могут обнаружить присутствие напряжения в жиле даже через слой побелки, штукатурки и глины. Их алгоритм действия практически всегда аналогичен. Но имеются и различия, которые возникают в зависимости от типов, моделей и ряда функций которыми обладает инструмент.

Иногда по своей функциональности одна отвертка, может заменить несколько дорогостоящих приборов. Существуют приборы с батарейкой, это дает возможность проверять исправность провода, даже в обесточенном состоянии.

Важно! Любая индикаторная отвертка имеет нижние и верхние пределы замеров напряжения. Их превышение может сломать устройство либо показывать неверную информацию.

Такая модель сможет дать максимальное количество интересующих сведений об исследуемой цепи:

  • звуковой сигнал сообщит о том, что в цепи присутствует напряжение;
  • на цифровом табло отобразиться величина напряжения в вольтах;
  • дает возможность проверить цепи переменного и постоянного тока в бытовых электроприборах;
  • определит полярность сетей;
  • с ее помощью можно провести прозвонку электроцепи световой или звуковой индикацией.

Проверка устройства перед использованием

Перед применением индикаторный прибор должен быть проверен на исправность. Батарейка, которая находится внутри устройства, поможет в этом удостовериться. Потребуется прикоснуться одновременно к жалу и другим пальцем к металлическому контакту на рукоятке. Световой индикатор должен в этот момент загореться.

Если устройство не предусматривает наличие батарейки, тогда понадобиться проводник под напряжением. К нему нужно прикоснуться жалом отвертки, а к металлу на рукоятке пальцем. В результате светодиод также будет светиться.

Основные меры безопасности

Обязательно следует соблюдать меры предосторожности:

  • запрещается использование пробника без винта;
  • допускается вынимание из устройства только батарейки;
  • после того как заменена батарейка, винт следует закрутить по часовой стрелке до упора;
  • если на пробнике имеются механическими повреждениями, то его использование запрещено;
  • не стоит использовать прибор выше пределов, указанных в технических характеристиках;
  • перед использованием пробника, потребуется его проверить в сети с точным наличием фазы;

Важно! При проведении замеров электрических линий, пробник держат только за изолированные элементы. Исключением являются цепи без напряжения.

Инструкция по использованию

Согласно своих характеристик такие индикаторные приспособления предназначаются для:

  • возможности определить переменное напряжение контактным способом до 250 В;
  • бесконтактным способом до 600 В;
  • обследования цепи на целостность от 0 до 2 Мом;
  • установления полярности: от 1,5 В до 36 В;
  • инструмент должен храниться в сухом и защищенном от влаги месте;
  • все операции лучше проводить в перчатках, чтобы обеспечить бесконтактное обследование;
  • после работы, следует очищать инструмент от пыли и мусора.

Бесконтактные отвертки очень чувствительны, она может реагировать и на фазу и на нейтраль, хотя реальное напряжение будет только в одном проводе. Поэтому для обычного электрика такая отвертка не нужна. Тем ни менее, она может помочь в проверке качества экранирования кабелей и отсутствии излучения.

В таких приборах существует три позиции переключателя. Две предусмотрены для осуществления дистанционного действия. В случае случайного прикосновения отверткой в этом режиме к токонесущей части провода, то вся электронная часть, состоящая из транзисторов и светодиода, выгорит.

Электроприборы окружают человека в повседневной жизни. Рано или поздно в любой электрической системе возникают проблемы и неполадки. Не всегда эти проблемы стоят того чтобы приглашать опытного электрика, некоторые поломки можно устранить самостоятельно. Однако, что иметь возможность отыскать неисправность в сети обязательно потребуется специальный инструмент, который стоит, приобрети заранее.

Необходимость разобраться, где расположен фазный провод, а где - нулевой может возникнуть у любого хозяина дома или квартиры. Это бывает нужно при проведении простейших электромонтажных работ, например, установке выключателей и розеток, замене светильников. Бывает это важно при проведении диагностики неисправностей домашней электросети, выполнении профилактических или ремонтных мероприятий. Да и некоторые приборы, например, терморегуляторы, при подключении к сети питания требуют четкого соблюдения расположения проводов «L» и «N» в клеммной колодке. В противном случае ничто не гарантирует ни их долговечность, ни корректность в работе.

Значит, необходимо научиться самостоятельно определять фазный и нулевой провод. Дело это не столь сложное – существуют проверенные методики с использованием простых и недорогих устройств. Но вот некоторые пользователи, непонятно по каким причинам, задают в поисковиках вопрос: как определить фазу и ноль без приборов? Ну что ж, давайте обсудим эту проблему.

В подавляющем большинстве случаев в квартирах практикуется прокладка однофазной сети питания 220 В/50 Гц. К многоэтажному дому подводится трехфазная мощная линия, но затем в распределительных щитах осуществляется коммутация на потребителей (квартиру) по одной фазе и нулевому проводу. Распределение стараются выполнить максимально равномерно, чтобы нагрузка на каждую из фаз была примерно одинаковой, без сильных перекосов.

В домах современной постройки практикуется прокладка и контура защитного заземления – современная мощная бытовая техника в своем большинстве требует такого подключения для обеспечения безопасности эксплуатации. Таким образом, к розеткам или, например, ко многим осветительным приборам подходят три провода – фаза L (от английского Lead), ноль N (Null) и защитное заземление PE (Protective Earth).

В зданиях старой постройки заземляющего защитного контура зачастую нет. Значит, внутренняя проводка ограничивается только двумя проводами – нулем и фазой. Проще, но уровень безопасности эксплуатации электрических приборов - не на высоте. Поэтому при проведении капитальных ремонтов жилищного фонда нередко включаются и мероприятия по усовершенствованию внутренних электросетей – добавляется контур РЕ.

В частных домах может практиковаться ввод и трехфазной линии. И даже некоторые точки потребления нередко организуются с подачей трехфазного напряжения 380 вольт. Например, это может быть отопительный котел или мощное технологическое станочное оборудование в домашней мастерской. Но внутренняя «бытовая» сеть все равно делается однофазной – просто три фазы равномерно распределяются по разным линиям, чтобы не допускать перекоса. И в любой обычной розетке мы все равно увидим те же три провода – фазу, ноль и заземление.

Про заземление, кстати, говорится в данном случае однозначно. И это по той причине, что хозяин частного дома ничем не связан и просто обязан его организовать, если такого контура не было, скажем, при приобретении ранее построенного зданий.

Заземление в частном доме – как можно сделать самостоятельно?

Иметь в своих жилых владениях контур защитного заземления – это значит существенно повысить уровень безопасности эксплуатации электроприборов. А по большому счету – и вообще степень безопасности проживания в доме для всей семьи. Если его еще нет, то, не откладывая надолго, необходимо организовывать . В помощь – статья нашего портала, к которой ведет рекомендованная ссылка.

Существуют ли в принципе способы определения фазы и нуля без приборов?

Прежде всего, давайте сразу «возьмем быка за рога» и ответим на это важный вопрос.

Такой способ представлен в единственном числе , да и то в определённой степени может считаться условным. Речь идет о цветовой маркировке проводов проложенных силовых кабелей и проводов.

Действительно, существует международный стандарт IEC 60446-2004 г. Его должны придерживаться и производители кабельной продукции, и специалисты, осуществляющие электротехнический монтаж

Раз речь идет об однофазной сети, то здесь вообще все должно быть просто. Изоляция проводника рабочего нуля должна быть синей или голубой. Защитное заземление чаще всего отличается зелено-желтой полосатой расцветкой. И изоляция фазного провода – каким-либо другим цветом, например, коричневым, как показано на иллюстрации.

Следует правильно понимать, что коричневый цвет для фазы – это вовсе не догма. Очень часто встречаются и иные расцветки – в широком диапазоне от белой до черной. Но в любом случае – она будет отличаться и от нулевого провода, и от защитного заземления.

Казалось бы – все очень просто и наглядно. Не ошибешься. Так почему же этот единственный способ распознания проводов без приборов все же считается условным?

Все дело лишь в том, что такой цветовой «распиновки» придерживаются, увы, далеко не везде и не всегда. Про дома старой постройки – и говорить не приходится. Там преимущественно проводка выполнена проводами в совершенно одинаковой белой изоляции, понятно, ничего никому не говорящей.

Да и в том случае, когда проложены кабели с проводами в изоляции разной расцветки, нужно быть совершенно уверенным, что проводящие электромонтажные работы специалисты строго следовали правилам. Нередко вызываемые «мастера», приглашенные со стороны, в этих вопросах проявляют вольности. Значит, уверенным можно быть, если работа контролировалась, выполнялась действительно профессиональным электриком с безупречной репутацией. Или если в ходе эксплуатации у хозяев уже была возможность убедиться, что «цветовая схема» соблюдена. Ну и, наконец, если всю прокладку хозяин жилья проводил самостоятельно, строго руководствуясь рекомендуемым стандартом.

Кроме того, бывает, что для проводки используется , расцветка изоляции проводников которого весьма далека от стандартного «набора» - синий, зелено-желтый и фазный какого-либо другого оттенка. Если нет схемы с описанием, то цвет проводов ничего определенного при таком раскладе не скажет.

Значит, придётся искать фазу и ноль другими способами, с использованием приборов.

Если читатель ждет сейчас разъяснений про другие способы определения нуля и фазы, с помощью каких-то «экзотических» приспособлений вроде сырой картошки, то совершенно напрасно. Автор статьи и сам никогда такими методами не баловался, и другим никогда и ни при каких обстоятельствах не станет рекомендовать .

Не будем даже касаться достоверности подобных проверок. Главное не в этом. Такие «опыты» - чрезвычайно опасны. Особенно для неопытного в электрическом хозяйстве человека. (А опытный, поверьте, всегда лучше воспользуется действительно достоверной и безопасной методикой). Кроме того, на грех такие манипуляции могут увидеть малолетние дети. Не тревожно ли будет потом, зная о присущем малышне стремлении во многом подражать родителям?

Да и, по большому счету, вряд ли получится представить себе ситуацию, в которой обстоятельства настолько припекли, что приходится прибегать к таким «языческим» методикам? Сложно сходить в ближайший магазин и приобрести за 30÷35 рублей простейшую индикаторную отвертку и забыть о проблеме? Если вечер, то нет никакой возможности потерпеть до утра с проведением диагностики? Да, в конце концов, нельзя попросить индикатор у соседа на несколько минут?

Кстати, картошка – это еще что… Находятся «специалисты», которые на полном серьезе рекомендует проверять наличие фазы легким касанием пальца к проводнику. Мол, если в сухом помещении, да в обуви на диэлектрической подошве – то ничего страшного не случится. Таких «советчиков» хочется спросить – а уверены ли они, что все те, кто внял их рекомендациям, живы и здоровы? Что не случилось «чрезвычайщины», когда человек, пробующий фазу «на ощупь», случайно коснулся телом заземленного предмета или другого оголённого проводника?

Чтобы понять степень опасности таких «проверок», рекомендуем ознакомиться с информацией о том, какие угрозы представляет жизни и здоровью этот «безобидный» электрический ток в сети 220 вольт. Возможно, после этого многие вопросы снимутся сами по себе.

«Бытовое» переменное напряжение 220 вольт может представлять смертельную опасность!

Жизнь современного человека невозможно представить без электричества. Но оно не всегда выступает только в роли «друга и помощника». При пренебрежении правилами эксплуатации приборов, при халатности, неаккуратности, и тем более – явно наплевательском отношении к соблюдению требований безопасности, оно способно покарать мгновенно и крайне жестоко. Об для человеческого организма подробно рассказывает отдельная публикация нашего портала.

И потому – резюмируем. Никаких способов, кроме одного упомянутого, самостоятельно опередить расположение нуля и фазы без приборов – не существует .

А вот теперь давайте пройдемся по возможным методикам такой проверки.

Определение фазы и нуля различными способами

С использованием индикаторной отвертки

Это, пожалуй, самая простая и доступная методика. Как уже говорилось, стоимость простейшего прибора –весьма невысока. А научиться работать с ним – дело нескольких минут.

Итак, как устроена обычная индикаторная отвертка:

Вся «начинка» этого пробника собрана в полом корпусе (поз.1), изготовленного из диэлектрического материала.

Рабочим органом такой отвёртки является металлическое жало (поз.2), чаще всего – плоской формы. Чтобы снизить вероятность случайного контакта с расположенными рядом с тестируемым проводом другими токопроводящими деталями, оголенный конец жала обычно невелик. Жало иди короткое само по себе, иди «одевается» в изоляционную оболочку.

Важно – жало индикаторной отвертки следует рассматривать именно как контактный наконечник при проведении тестирования. Да, при необходимости им можно выполнить и простейшие монтажные операции, например, открутить винт, удерживающий крышку розетки или выключателя. Но регулярно использовать его именно в качестве отвертки – большая ошибка. И долго при такой эксплуатации прибор не проживет 0 он попросту не рассчитан на высокие нагрузки.

Металлический стержень жала, входящий в корпус, становится проводником, обеспечивающим контакт с внутренней схемой индикатора. А сама схема состоит, во-первых, из мощного резистора (поз.4) номиналом не менее 500 кОм. Его задача – снизить показатели силы тока при замыкании цепи до безопасных для человека значений.

Следующий элемент – неоновая лампочка (поз. 5), способная загораться при весьма небольших показателях протекающего через нее тока. Взаимный электрический контакт всех элементов схемы обеспечивает прижимная пружина (поз. 6). А она, в свою очередь, сжимается вкручивающейся в торцевую оконечность корпуса заглушкой (поз.7), которая может быть или полностью металлической, или имеющей металлическую «пятку». То есть эта заглушка при проведении проверок играет роль контактной площадки.

При прикосновении к контактной площадке пальцем пользователь «включается» в цепь. Тело человека, во-первых, само по себе обладает определенной проводимостью, а во-вторых, представляет собой очень большой «конденсатор».

На этом и основан принцип поиска фазы и нуля. Жалом индикаторной отвёртки касаются зачищенного проводника (клеммы розетки или выключателя, другой тонконесущей детали, например, контактного лепестка патрона для лампочки). Затем контактной площадки пробника касаются пальцем.

Если жало отвертки коснулось фазы, то при замыкании цепи напряжения достаточно, чтобы вызвать неопасный для человека ток, приводящий к свечению неоновой лампочки.

В то же случае, если проверка пришлась на нулевой контакт, свечения не возникнет. Да, там тоже бывает небольшой потенциал, особенно если в квартире (доме) в это время работают другие электрические приборы. Но ток благодаря резистору будет настолько мал, что свечения индикатора вызвать не должен.

Аналогично и на заземляющем проводнике – там, по сути, вообще не должно быть никакого потенциала.

В том же случае, если, скажем, в розетке два контакта показывают фазу – это повод искать причину такой серьезной неисправности. Но это уже тема для отдельного рассмотрения.

Несколько иначе выполняется проверка с индикаторной отверткой более усовершенствованного типа. Такие пробники позволяют не только определять фазу и ноль, но и проводить прозвонку цепей и ряд других операций.

Внешне такие отвёртки-индикаторы очень схожи с рассмотренными выше простейшими. Разница заключается лишь в том, что вместо неоновой лампочки используется светодиод. А в корпусе размещены элементы питания на 3 вольта, обеспечивающие функционирование схемы.

Если нет уверенности в том, какая конкретно отвертка имеется в распоряжении пользователя, можно провести простейший тест. Просто одновременно касаются рукой и жала, и контактной площадки. Цепь при этом замкнется, и светодиод об этом просигналит своим свечением.

Для чего это все говорится? Да просто потому, что алгоритм определения фазы и нуля при пользовании такой отверткой несколько меняется. А конкретно – прикасаться к контактной площадке не требуется. Простое касание фазного проводника вызовет свечение индикатора. На рабочем нуле и на заземлении такого свечения не будет.

В наше время в продаже широко представлены и более дорогие индикаторные отвёртки, с электронной начинкой, световой и звуковой индикацией. А нередко – даже с цифровым жидкокристаллическим дисплеем, показывающим напряжение на тестируемом проводнике. То есть, по сути, отвертка-индикатор становится упрощенным подобием

Пользоваться такими тоже не особо сложно. Руководствоваться придется прикладываемой к прибору инструкцией – в любом случае прибор должен однозначно указать на наличие напряжения на фазном проводе и отсутствие – на нулевом или заземляющем. Главное – убедиться до начала проверки, что возможности используемого прибора соответствуют напряжению в сети. Это обычно указывается непосредственно на корпусе индикатора.

Еще одним «родственником» индикаторных отверток является бесконтактный пробник напряжения. На его корпусе вообще полностью отсутствуют токопроводящие детали. А рабочая часть представляет собой вытянутый пластиковый «носик», который как раз и подводится к тестируемому проводнику (клемме).

Удобство такого прибора еще и в том, что вовсе не обязательно проводить зачистку проверяемого провода от изоляции. Прибор реагирует не на контакт, а на создаваемое проводником электромагнитное переменное поле. При определенной его напряжённости срабатывает схема, и прибор сигнализирует о том, что перед нами фазный провод, включением светового и звукового сигнала.

Определение фазы и нуля с помощью мультиметра

Еще одним контрольно-измерительным прибором, которым бы необходимо обзавестись любому мастеровитому хозяину дома, является Стоимость недорогих, но в достаточной степени функциональных моделей – в пределах 300÷500 рублей. И вполне можно один раз сделать такое приобретение – оно обязательно окажется востребованным.

Итак, как определить фазу с помощью мультиметра. Здесь могут быть различные варианты.

А. Если проводка включает три провода, то есть фазу, ноль и защитное заземление, но с цветовой маркировкой или нет ясности, или отсутствует уверенность в ее достоверности, то можно применить метод исключения.

Выполняется это следующим образом:

  • Мультиметр готовится к работе. Черный измерительный провод подключается к разъему СОМ, красный – к разъему для замера напряжения.
  • Переключатель режимов работы переводится в сектор, отведенный замерам переменного напряжения (~V или ACV), и стрелкой устанавливается на значение, превышающее напряжение в сети. В разных моделях это может быть, например, 500, 600 или 750 вольт.

  • Далее, проводятся замеры напряжения между предварительно зачищенными проводниками. Всего комбинаций в данном случае может оказаться три:
  1. Между фазой и нулем напряжение должно быть близким к номиналу в 220 вольт.
  2. Между фазой и заземлением может быть такая же картина. Но, правда, если линия оснащена системой защиты от утечек тока (устройством защитного отключения - УЗО), то защита вполне может при этом сработать. Если УЗО нет, или ток утечки получается совсем незначительный, то напряжение, опять же, в районе номинала.
  3. Между нулем и заземлением напряжения быть не должно.

Вот как раз последний вариант покажет, что провод, не участвующий в этом замере, и является фазным.

После проверки необходимо выключить напряжение, заизолировать зачищенные концы проводов и произвести маркировку. Например, наклеив полоски белого лейкопластыря и сделав на них соответствующие надписи.

Б. Можно проверить провод (контакт в розетке) и непосредственным примером напряжения на нем. Выполняется это так:

  • Подготовка мультиметра к работе – по той же схеме, что показывалась выше.
  • Далее, проводится контрольный замер напряжения. Здесь преследуются сразу две цели. Во-первых, необходимо убедиться, что обрыва в линии нет, и мы не будем искать фазу и ноль, что говорится, на пустом месте. А во-вторых, тестируется и сам прибор. Если показания корректные, значит – переключение выполнено правильно, и в цепь включён мощный резистор, который обеспечит должный уровень безопасности последующим операциям.
  • Красным измерительным проводом касаются тестируемого проводника. Если это розетка, то в гнездо вставляется щуп, если зачищенный конец проводника – лучше воспользоваться зажимом-«крокодильчиком».
  • Второго щупа касаются пальцем правой руки. И - наблюдают за показаниями на дисплее мультиметра.

— Если контрольный щуп был установлен на ноль, напряжение показываться не будет. Или же его значение будет крайне невелико - измеряемое единицами вольт.

— В том же случае, когда контрольный провод оказался на фазе, индикатор покажет напряжение в несколько десятков, а то и более вольт. Конкретное значение не столь важно – оно зависит от очень большого количества факторов. Это и установленный предел измерений используемой модели мультитестера, и особенности сопротивления тела конкретного человека, и влажность, и температура воздуха, и обувь, в которую обут мастер и т.п. Главное – напряжение есть, и оно разительно отличается от второго контакта. То есть – фаза отыскана.

Наверное, не все смогут преодолеть психологический рубеж – коснуться рукой щупа, когда мультитестер подключен к розетке. Бояться-то здесь особо нечего – мы предварительно протестировали прибор замером напряжения. И ток, идущий сейчас через него при замыкании цепи – немногим отличается от того, что проходит через индикаторную отвертку. Но тем не менее – для некоторых такое прикосновение становится прихологически невозможным.

Ничего страшного, можно поступить и несколько иначе. Например, просто коснуться вторым щупом стены – штукатурки или даже обоев. Какая-никакая влажность все же есть, и это позволит замкнуть цепь. Правда, показания на индикаторе будут, скорее всего, значительно меньше. Но и таких будет достаточно, чтобы однозначно разобраться, какой же из контактов является фазным.

Ничуть не хуже будет подобная проверка, если в качестве второго контакта будет задействован какой-либо заземленный прибор или предмет, например, радиатор отопления или водопроводная труба. Подойдет и металлический каркас, даже не имеющий заземления. А иногда даже один подключенный к розетке щуп при втором, просто лежащем на полу или на столе, позволяет увидеть разницу. При тестировании фазы тестер может показать единицы или пару десятков вольт. При нулевом проводнике, естественно, будет ноль.

В. С определением фазы, как видите, особых проблем нет. Но как быть в том случае, если проводов три. То есть с фазой определились, и теперь надо выяснить, какой из двух оставшихся является нулем, а какой – защитным заземлением.

А вот это – не столь просто. Есть, конечно, несколько доступных способов. Но ни один из них не может претендовать на «истину в последней инстанции». То есть здесь требуются особые приборы, которые имеются в распоряжении профессионалов электриков.

Но иногда помогают и самостоятельные тестирования.

Про одно из них уже говорилось выше. Когда замеряется напряжение между фазой и нулем, никаких особенностей это вызывать не должно. Но при замере между фазой и землей из-за неизбежной утечки тока возможно срабатывания системы защиты – УЗО.

Другой способ выявления нуля и защитного заземления – прозвон. То есть можно попытаться, переключив мультиметр на измерение сопротивления в диапазоне, скажем, до 200 Ом и, в обязательном порядке – отключив напряжение на щите, промерить поочередно сопротивление между этими проводниками и гарантированно заземленным объектом. На проводнике РЕ это сопротивление по идее должно быть значительно ниже.

Но, опять же, способ этот не отличается достоверностью, так как соединения практикуются разные, и значения могут получиться примерно одинаковыми, то есть ни о чем не говорящими.

Еще один вариант – можно отключить шину заземления от подводящего к ней контура. Или же снять с нее предполагаемый провод, подлежащий проверке. Затем – или выполнить прозвон, или провести поочередный промер напряжения между фазой и оставшимися двумя проводниками. Результаты часто позволяют судить о том, где ноль, а где РЕ.

Но, сказать по правде, этот способ не кажется ни действенным, ни безопасным. Опять же, по причине различных нюансов прокладки проводки и коммутации на распределительных щитах, результат может получиться не вполне достоверным.

Узнайте, а также ознакомьтесь с его назначением и приемами работы с видео прибором, из нашей новой статьи на нашем портале.

Так что если нужна гарантированная ясность, где же ноль и где заземление, а самому выяснить не представляется возможным, лучше обратиться квалифицированному электрику. При всей схожести этих проводников в домашней проводке путать их ни в коем случае нельзя.

Итак, были рассмотрены основные доступные способы определения фазы и нуля. Еще раз подчеркнём – если визуальный способ определения (по цветовой маркировке изоляции) не гарантирует достоверности информации, то все остальные должны проводиться исключительно с использованием специальных приборов. Никакие «100% методики» со всяческими картошками, пластиковыми бутылками, банками с водой и иными «игрушками» – совершенно недопустимы!

Кстати, в публикации ничего не говорится и об использовании так называемой «контрольки» - лампочки в патроне с двумя проводниками. Опять же – это потому что такие тестирования напрямую запрещены действующими правилами безопасной эксплуатации электроустановок. Не рискуйте сами и не создавайте потенциальной угрозы своим близким!

В завершение публикации – небольшой видеосюжет, посвященный проблеме поиска фазы и нуля.

Видео: Как можно определить расположение фазы и нуля

Очень немного людей понимают суть электричества. Такие понятия как "электрический ток", "напряжение" "фаза" и "ноль" для большинства являются темным лесом, хотя с ними мы сталкиваемся каждый день. Давайте же получим крупицу полезных знаний и разберемся, что такое фаза и ноль в электричестве. Для обучения электричеству с "нуля" нам нужно разобраться с фундаментальными понятиями. В первую очередь нас интересуют электрический ток и электрический заряд.

Электрический ток и электрический заряд

Электрический заряд – это физическая скалярная величина, которая определяет способность тел быть источником электромагнитных полей. Носителем наименьшего или элементарного электрического заряда является электрон. Его заряд равен примерно -1,6 на 10 в минус девятнадцатой степени Кулон.

Заряд электрона - минимальный электрический заряд (квант, порция заряда), который встречается в природе у свободных долгоживущих частиц.

Заряды условно делятся на положительные и отрицательные. Например, если мы потрем эбонитовую палочку о шерсть, она приобретет отрицательный электрический заряд (избыток электронов, которые были захвачены атомами палочки при контакте с шерстью).

Такую же природу имеет статическое электричество на волосах, только в этом случае заряд является положительным (волосы теряют электроны).

Основным видом переменного тока является синусоидальный ток . Это такой ток, который сначала нарастает в одном направлении, достигая максимума (амплитуды) начинает спадать, в какой-то момент становится равным нулю и снова нарастает, но уже в другом направлении.


Непосредственно о таинственных фазе и нуле

Все мы слышали про фазу, три фазы, ноль и заземление.

Простейший случай электрической цепиоднофазная цепь . В ней всего три провода. По одному из проводов ток течет к потребителю (пусть это будет утюг или фен), а по другому – возвращается обратно. Третий провод в однофазной сети – земля (или заземление).

Провод заземления не несет нагрузки, но служит как бы предохранителем. В случае, когда что-то выходит из-под контроля, заземление помогает предотвратить удар электрическим током. По этому проводу избыток электричества отводится или "стекает" в землю.

Провод, по которому ток идет к прибору, называется фазой , а провод, по которому ток возвращается – нулем.

Итак, зачем нужен ноль в электричестве? Да за тем же, что и фаза! По фазному проводу ток поступает к потребителю, а по нулевому - отводится в обратном направлении. Сеть, по которой распространяется переменный ток, является трехфазной. Она состоит из трех фазовых проводов и одного обратного.

Именно по такой сети ток идет до наших квартир. Подходя непосредственно к потребителю (квартирам), ток разделяется на фазы, и каждой из фаз дается по нулю. Частота изменения направления тока в странах СНГ - 50 Гц.

В разных странах действуют разные стандарты напряжений и частот в сети. Например, в обычной домашние розетки в США подается переменный ток напряжением 100-127 Вольт и частотой 60 Герц.

Провода фазы и нуля нельзя путать. Иначе можно устроить короткое замыкание в цепи. Чтобы этого не произошло и Вы ничего не перепутали, провода приобрели разную окраску.

Каким цветом фаза и ноль обозначены в электричестве? Ноль, как правило, синего или голубого цвета, а фаза - белого, черного или коричневого. Провод заземления также имеет свой окрас - желто-зеленый.


Итак, сегодня мы узнали, что же значат понятия «фаза» и «ноль» в электричестве. Будем просто счастливы, если для кого-то эта информация была новой и интересной. Теперь, когда вы услышите что-то про электричество, фазу, ноль и землю, вы уже будете знать, о чем идет речь. Напоследок напоминаем, если вам вдруг понадобится произвести расчет трехфазной цепи переменного тока, вы можете смело обращаться в . С помощью наших специалистов даже самая дикая и сложная задача станет вам «по зубам».

При ремонте электрической проводки, или ее обслуживании часто может потребоваться определить какой провод подключен к нулю, а какой к фазе. Это требуется для установки выключателей или коммутации другого электрооборудования. Прежде, чем рассказать, как определить ноль и фазу, расскажем о связанных с этим предрассудках.

Наиболее распространенные заблуждения

Приведем часто встречающиеся заблуждения, связанные с определением нулевого и фазного провода:

В качестве примера такого оборудования можно привести контролер, управляющий работой газового котла. При индикации ошибки «недостаточно напряжения» требуется поменять полярность.

Подобная проблема может возникнуть на генераторе импульсов, а также при подключении лабораторного измерительного оборудования;

  • если в кабеле три жилы, и одна из них разноцветная, то она является заземлением. Никогда нельзя быть уверенным в этом, особенно учитывая, какая была неразбериха с ГОСТами в последнее десятилетие прошлого века. Поэтому лучше всегда проверять кабель.

Цветовая маркировка

Чтобы в дальнейшем не утруждать себя поиском нуля и фазы, необходимо придерживаться единого стандарта, прописанном в ГОСТе Р 50462-92.

В таблице показано каким цветом обозначается тот или иной провод.

В старых домах проводка может быть выполнена одноцветным проводом. Если у вас подобная ситуация, рекомендуем промаркировать выводы электропроводки при помощи термоусадочных трубок.

Ненужно доверять цветовой маркировке, если у вас возникли малейшие сомнения. Лучше лишний раз убедиться в соответствии назначения проводов цветам.

Самые доступные и распространенные способы

Наиболее простой способ, который позволяет точно определить фазный и нулевой провод, выполняется индикаторной отверткой. Ее можно купить или собрать самостоятельно. Схема такого устройства несложная, она представлена на рисунке ниже.

Обозначения на схеме:

  • А – контактная пластина;
  • B – жало детектора;
  • R1 – сопротивление с номиналом от 1,5 до 2МОм, мощностью от 0,5Вт;
  • HG1 – любой тип неоновой лампы.

Видео инструкция: определение фазы и ноля индикаторной отверткой

Компактные размеры используемых деталей позволяют собрать устройство в корпусе шариковой ручки. Промышленные образцы напоминают внешним видом небольшую отвертку.


Определение подключения провода к фазе или нулю фазы (в двухпроводной электроцепи) производится по ниже описанному пошаговому алгоритму :

  1. проводка обесточивается;
  2. с проводов, подлежащих тестированию, снимается защитный слой изоляции (одного сантиметра будет достаточно);
  3. включаем электричество, поскольку определить ноль, если фаза отключена, не получится;
  4. жалом пробника поочередно проверяются два провода, прикасаясь при этом к контактной пластине индикатора, как это показано на фото;
  5. если неоновая лампочка засветиться, тестируемая жила является – фазой электрической цепи.

В розетке индикатор напряжения срабатывает на два контакта

Ситуация, когда пробник определяет две фазы в розетке и не видит ноль, может озадачить начинающего электрика. Дело еще более запутается, если замерить разность потенциалов мультиметром или тестером. Они покажут что напряжение отсутствует. Это характерные признаки обрыва ноля.

Заметим, что при внешних признаках отсутствия напряжения в электропроводке (по показаниям мультиметра) можно получить довольно ощутимый удар током. Именно поэтому нельзя пренебрегать пробником напряжения.

Для решения этой проблемы достаточно устранить обрыв нулевого провода, если вы не знаете как это сделать, лучше перепоручите эту работу профессиональным электрикам.

Способы для трехжильной проводки

В этом случае третьим проводом будет заземление. Фаза без труда находится пробником (как это сделать было описано выше). Чтобы найти ноль и землю, для их определения следует воспользоваться мультиметром или тестером.

Порядок действий должен быть следующим:

  1. при помощи пробника определяем фазу;
  2. измеряем напряжение между фазой и оставшимися двумя проводами;
  3. разность потенциалов между нулем и фазой будет в районе 220В, напряжение между землей и фазой будет меньше этого значения.

Собственно, имея мультиметр, можно определить землю, ноль и фазу без индикатора напряжения. Расскажем, как это сделать, пользуясь моделью M820D.


Для этой цели необходимо выставить диапазон измерений переменного тока больше 220В. Щупы подключаются к гнездам V и СОМ (показаны на фотографии ниже).


Поочередно меряем напряжение между тремя проводами, там где будет около 220В, одна жила – фаза, вторая – ноль. Соответственно, третий провод – земля.

Видео: определение фазы и ноля индикаторной отверткой и мультиметром (2 способа)

Нет необходимых приборов

В домашнем хозяйстве должен быть как минимум пробник напряжения, но если его нет не расстраивайтесь, существуют способы определить землю, ноль и фазу без приборов.

Все что от вас потребуется, это сделать контрольную лампу, примерно такую, как изображена на фото. Лампа должна работать от 220В и быть не слишком мощной (чтобы не слепить глаза).


Вариантов реализации данного устройства множество, главное – обеспечить надежную изоляцию в местах крепления проводов к лампе и щупов. Естественно, если потребуется протестировать провода в коробке на потолке, необходимо сделать щупы соответственной длины.

Для определения фазы достаточно один контакт такого пробника подключить к испытуемому проводу, а второй к заземлению. В качестве последнего могут выступать металлические трубы отопления или холодной воды. Место на трубе, к которому будете прикасаться щупом контрольной лампы, необходимо предварительно зачистить.

Провод, при прикосновении к которому лампа будет светиться, и будет фазой.

В интернете опубликовано много видео, как определить фазу, не пользуясь никаким специальным оборудованием. Например, при помощи сырой картошки или водопроводной воды. Мы хотим предупредить, что повторение таких сомнительных опытов может нанести существенный урон вашему здоровью.

Как определить ноль и фазу, причем сделать это с максимальной безопасностью, мы рассказали, поэтому нет необходимости в изобретении новых способов.

В старых домах еще сохранились двухклеммные розетки. В этом случае проверить устройство можно просто с помощью тестера фазы. Нужно взять тестер (индикаторную отвертку), вставить его в любой разъем розетки. Приложить палец к металлическому колпачку на рукоятке. Когда неоновая лампочка загорится, она тем самым покажет «фазу». Вторая клемма должна быть нулевой. Но так случается не всегда.

Расцветка, индикаторная отвертка или мультиметр

Самый простой способ проверить заземление, это обратить внимание на цвет изоляции.

У заземляющего провода она должна быть желтой с зелеными полосами, а у нулевого светло-синей. Но не всегда это требование выполняется.

В некоторых домах старой постройки электропроводка сделана отдельными проводниками. Если хозяину пришлось проводить изменения в распределительной коробке, то вполне возможен вариант, когда на розетку приходят только два фазных или нулевых проводника. Поэтому необходимо проверить оба гнезда. При касании нуля неоновая лампочка на индикаторе напряжения не должна загораться.

В современных зданиях используются трехклеммные розетки . На нее приходят фазовый, нулевой и заземляющий проводники. Контакты должны соответствовать своему функциональному назначению. Иначе, возможны несчастные случаи при использовании стиральной машины или бойлера. Поэтому возникают вопросы, как проверить заземление в розетке, чтобы избежать ошибок при монтаже и спокойно, без страха пользоваться своими приборами.

Индикаторная отвертка гарантированно определяет только фазу. Отличить ноль от земли она не может. Маленькой наводки недостаточно для загорания неоновой лампочки. Тогда найдем фазу и ноль мультиметром или вольтметром.

Варианты показания мультиметра

Любой прибор, индикаторную отвертку или тестер, необходимо проверить на работоспособность и только после этого применять. Изоляция должна быть целой, без трещин и разрывов. Острие щупа должно отделяться от держателя диэлектрической шайбой, для защиты от случайных прикосновений. Корпус измерительного устройства должен быть целым. Перед замером штекеры вставляются в гнезда прибора, которые соответствует измерению переменного напряжения. Убедившись в исправности устройства, нужно перевести его в режим измерения переменного напряжения со шкалой 750 V. Это необходимо на случай измерения линейного напряжения, когда по ошибке на розетку завели две фазы.

Этот способ проверки розетки годится, если проверяющий уверен, что заземляющий контакт действительно земля. Тогда стоит задача найти ноль. Один щуп касается заземляющего контакта, а второй вставляется в любое гнездо розетки. Могут быть следующие варианты:

  • прибор показывает 220 V, значит контакт фазовый;
  • если 0 или единицы вольт, то это нулевой провод.

Если мультиметр относительно заземляющего показывает 0 вольт на гнездовых контактах, значит все они где-то замкнуты между собой.

Показания в несколько вольт говорят, что это ноль. Но как определить ноль, когда дом снабжается электричеством по системе энергоснабжения TN - C и повторным заземлением рядом со зданием? Ведь и в этом случае будут нулевые показания прибора.

Чтобы убедиться, что данный проводник нулевой, нужно отключить заземление в подъездном электрическом щите. Затем замерить напряжение между гнездовыми контактами розетки. Прибор показывает 220 V – найден ноль розетки. Мультиметр ничего не показывает – найдено заземление.

При показаниях прибора 220 V на каждом контакте относительно заземляющего, нужно произвести дополнительное измерение между двумя гнездами розетки. Прибор показывает 0, значит, одна фаза заведена на оба гнезда. В противном случае прибор покажет 380 V, что означает присутствие на розетке двух фаз.

Определение назначения проводников

При работе с электропроводкой обязательно нужно перепроверять назначения проводников розетки. Нет никакой гарантии, что электрик или предыдущий владелец помещения не перепутал провода. Поэтому, если тестер показывает напряжение 220 V относительно клеммы по внешнему виду являющейся заземляющей, это не значит, что она таковой и является. Это значит, что один из контактов является фазой, а второй нулем или землей. Если тестер покажет 0, то здесь присутствуют нулевой и заземляющий проводник. Точно понять, что есть что, невозможно.

При отсутствии стопроцентной уверенности в назначении заземляющей клеммы розетки действуют иначе. Сначала нужно исключить наличие двух фаз. Проверяем напряжение между всеми контактами. Если прибор 380 V нигде не показывает, а только 220, значит, к розетке подведен один фазный проводник. Теперь нужно приступить к поиску заземления.

Сначала надо отключить заземляющий проводник в этажном щитке. Он присоединен через болтовое соединение к специальной шине, приваренной к корпусу электрического щита.

После этого замеряется напряжение между гнездовыми коннекторами.

Если прибор показывает 220 V, значит гнездовые контакты – это фазный и нулевой провод, а заземляющая клемма действительно таковой является. Теперь зная точно, где находится земля, можно определить остальные коннекторы, но предварительно нужно обратно присоединить «землю» к шине заземления.

Проводим измерение напряжения относительно земляной клеммы. Одно гнездо показывает 220 V – это фаза, второе – 0, то это нулевой контакт.

Если мультиметр показывает 0, значит, земля была присоединена к одному из гнездовых контактов, а второй является нулевым или фазным. Теперь измерения проводим между гнездовым и заземляющим контактом розетки. Если напряжение отсутствует, значит, это гнездо и есть настоящее заземление.
Показания в 220 V говорят сами за себя.

Проверка электропроводки

Проверка заземления электропроводки происходит примерно так же, как с розеткой. Для измерения параметров сети понадобятся мультиметр трехфазный или однофазный, а также индикаторная отвертка.

При ремонте электропроводки и подключении стиральной машины, электрического обогревателя, плиты, духовки и других приборов приходится менять кабели и соединения в распределительных коробках. В этом случае нужно выяснить назначение каждого проводника, необходимо проверить наличие заземления в нужных местах.

Вначале нужно отключить входной автомат на этажном щите. Затем вскрыть распределительную коробку. Развести провода в разные стороны, чтобы они не соприкасались между собой, и снять изоляцию в местах соединения.

После этого входной автомат включается. Индикаторной отверткой находятся фазные провода. Они могут принадлежать одной, двум или трем фазам.

При наличии трехфазного мультиметра, можно сразу проверить состояние сети. Однофазным мультиметром определение количества фаз происходит дольше. К примеру, если напряжения между тремя проводами составляют по 0 вольт, то это фазные провода от одной фазы. Если прибор показывает напряжение между двумя проводами 380 V, а между двумя другими 0, то две фазы. При напряжении 380 V между всеми проводниками можно говорить о наличии трех фаз.

Определение заземления происходит, как и в случае с розеткой, только здесь проводов будет больше. Сначала отключается заземляющий провод в этажном щитке. Затем один щуп мультиметра цепляется за фазовый провод, а второй за проводник пока неизвестного назначения. Если прибор покажет напряжение 220 V – этот провод нулевой, если ноль, то это и есть земля.

Дальше отключают входной автомат. Присоединяется заземляющий провод. Когда проверка закончена, выполняется правильное подсоединение всех элементов электросети, места соединений изолируются, коробка закрывается. Автомат защиты включается.