Реакции с оксидами. Химические свойства воды

Оксиды - это весьма распространённый тип соединений, которые содержатся в земной коре и во Вселенной вообще.

Классификация оксидов

Солеобразующие оксиды - это оксиды, которые в результате химической реакции образуют соли. Это оксиды металлов и неметаллов, которые при взаимодействии с водой образуют соответствующие кислоты, а при взаимодействии с основаниями – соответствующие кислые и нормальные соли.

    • основные оксиды (например, оксид натрия Na2O, оксид меди(II) CuO): оксиды металлов, степень окисления которых I-II;
    • кислотные оксиды (например, оксид серы(VI) SO3, оксид азота(IV) NO2): оксиды металлов со степенью окисления V-VII и оксиды неметаллов;
    • амфотерные оксиды (например, оксид цинка ZnO, оксид алюминия Al2О3): оксиды металлов со степенью окисления III-IV и исключения (ZnO, BeO, SnO, PbO).

Несолеобразующие оксиды:

оксид углерода(II) СО, оксид азота(I) N2O, оксид азота(II) NO, оксид кремния(II) SiO.

Основные свойства химических оксидов

1.Растворимые в воде основные оксиды вступают в реакцию с водой, образуя основания:

Na2O + H2O → 2NaOH.

2.Взаимодействуют с кислотными оксидами, образуя соответствующие соли

Na2O + SO3 → Na2SO4.

3.Реагируют с кислотами, образуя соль и воду:

CuO + H2SO4 → CuSO4 + H2O.

4.Реагируют с амфотерными оксидами:

Li2O + Al2O3 → 2LiAlO2.

Химические свойства кислотных оксидов

В случае, если в составе оксидов вторым элементом будет неметалл или металл, проявляющий высшую валентность (обычно это от IV до VII), то такие оксиды будут кислотными. Кислотными оксидами (ангидридами кислот) называются такие оксиды, которым соответствуют гидроксиды, относящие к классу кислот. Это, например, CO2, SO3, P2O5, N2O3, Cl2O5, Mn2O7 и т.д. Они растворяются в воде и щелочах, образуя при этом соль и воду.

1.Взаимодействуют с водой, образуя кислоту:

SO3 + H2O → H2SO4.

Но не все кислотные оксиды непосредственно реагируют с водой (SiO2 и др.).

2.Реагируют с основанными оксидами с образованием соли:

CO2 + CaO → CaCO3

3.Взаимодействуют со щелочами, образуя соль и воду:

CO2 + Ba(OH)2 → BaCO3 + H2O.

Химические свойства амфотерных оксидов

В данном составе амфотерного оксида есть элемент, который обладает амфотерными свойствами.Под амфотерностью понимают способность соединений проявлять в зависимости от условий кислотные и основные свойства.

1.Взаимодействуют с кислотами, образуя соль и воду:

ZnO + 2HCl → ZnCl2 + H2O.

2.Реагируют с твёрдыми щелочами (при сплавлении), образуя в результате реакции соль – цинкат натрия и воду:

ZnO + 2NaOH → Na2 ZnO2 + H2O.

Физические свойства

Жидкие (SO3, Mn2O7); Твердые (K2O, Al2O3, P2O5); Газообразные (CO2, NO2, SO2).

Получить оксиды можно при...

Взаимодействие простых веществ (за исключением инертных газов, золота и платины) с кислородом:

2H2 + O2 → 2H2O

2Cu + O2 → 2CuO

При горении в кислороде щелочных металлов (кроме лития), а также стронция и бария образуются пероксиды и надпероксиды:

2Na + O2 → Na2O2

Обжиг или горение бинарных соединений в кислороде:

4FeS2 + 11O2 → 2Fe2O3 + 8SO2

CS2 + 3O2 → CO2 + 2SO2

2PH3 + 4O2 → P2O5 + 3H2O

Термическое разложение солей:

CaCO3 → CaO + CO2

2FeSO4 → Fe2O3 + SO2 + SO3

Термическое разложение оснований или кислот:

2Al(OH)3 → Al2O3 + 3H2O

4HNO3 → 4NO2 + O2 + 2H2O

Окисление низших оксидов в высшие и восстановление высших в низшие:

4FeO + O2 → 2Fe2O3

Fe2O3 + CO → 2FeO + CO2

Взаимодействие некоторых металлов с водой при высокой температуре:

Zn + H2O → ZnO + H2

Взаимодействие солей с кислотными оксидами при сжигании кокса с выделением летучего оксида:

Ca3(PO4)2 + 3SiO2 + 5C(кокс) → 3CaSiO3 + 2P+5CO

Взаимодействие металлов с кислотами-оксилителями:

Zn + 4HNO3(конц.) → Zn(NO3)2 + 2NO2 + 2H2O

При действии водоотнимающих веществ на кислоты и соли:

2KClO4 + H2SO4(конц) → K2SO4 + Cl2O7 + H2O

Взаимодействие солей слабых неустойчивых кислот с более сильными кислотами:

NaHCO3 + HCl → NaCl + H2O + CO2

Номенклатура оксидов

Слово «оксид», после которого следует наименование химического элемента в родительном падеже. При образовании нескольких оксидов в их названиях указывается его степень окисления римской цифрой в скобках сразу после названия. Часто используют и другие наименования оксидов по числу атомов кислорода: если оксид содержит только один атом кислорода, то его называют монооксидом , моноокисью или закисью , если два - диоксидом или двуокисью , если три - то триоксидом или триокисью и т. д.

Оксиды - это сложные неорганические соединения, состоящие из двух элементов, один из которых кислород (в степени окисления -2).

Например, Na 2 O, B 2 O 3 , Cl 2 O 7 относятся к оксидам. Все перечисленные вещества содержат кислород и еще один элемент. Вещества Na 2 O 2 , H 2 SO 4 , HCl не относятся к оксидам: в первом степень окисления кислорода равна -1, в составе второго не два, а три элемента, а третье вообще не содержит кислорода.

Если вы не понимаете смысл термина "степень окисления", ничего страшного. Во-первых, можно обратиться к соответствующей статье на этом сайте. Во-вторых, даже без понимания этого термина можно продолжать чтение. Временно можете забыть про упоминание о степени окисления.

Получены оксиды практически всех известных на сегодняшний день элементов, кроме некоторых благородных газов и "экзотических" трансурановых элементов. Более того, многие элементы образуют несколько оксидов (для азота, например, их известно шесть).

Номенклатура оксидов

Мы должны научиться называть оксиды. Это очень просто.

Пример 1 . Назовите следующие соединения: Li 2 O, Al 2 O 3 , N 2 O 5 , N 2 O 3 .

Li 2 O - оксид лития,
Al 2 O 3 - оксид алюминия,
N 2 O 5 - оксид азота (V),
N 2 O 3 - оксид азота (III).

Обратите внимание на важный момент: если валентность элемента постоянна, мы НЕ упоминаем ее в названии оксида. Если валентность меняется, следует обязательно указать ее в скобках! Литий и алюминий имеют постоянную валентность, у азота валентность переменная; именно по этой причине названия окислов азота дополнены римскими цифрами, символизирующими валентность.

Задание 1 . Назовите оксиды: Na 2 O, P 2 O 3 , BaO, V 2 O 5 , Fe 2 O 3 , GeO 2 , Rb 2 O. Не забывайте, что существуют элементы как с постоянной, так и с переменной валентностью.

Еще один важный момент: вещество F 2 O правильнее называть не "оксид фтора", а "фторид кислорода"!

Физические свойства оксидов

Физические свойства весьма разнообразны. Обусловлено это, в частности, тем, что в оксидах могут проявляться разные типы химической связи. Температуры плавления и кипения варьируются в широких пределах. При нормальных условиях оксиды могут находиться в твердом состоянии (CaO, Fe 2 O 3 , SiO 2 , B 2 O 3), жидком состоянии (N 2 O 3 , H 2 O), в виде газов (N 2 O, SO 2 , NO, CO).

Разнообразна окраска: MgO и Na 2 O белого цвета, CuO - черного, N 2 O 3 - синего, CrO 3 - красного и т. д.

Расплавы оксидов с ионным типом связи хорошо проводят электрический ток, ковалентные оксиды, как правило, имеют низкую электропроводность.

Классификация оксидов

Все существующие в природе оксиды можно разделить на 4 класса: основные, кислотные, амфотерные и несолеобразующие. Иногда первые три класса объединяют в группу солеобразующих оксидов, но для нас это сейчас несущественно. Химические свойства оксидов из разных классов отличаются весьма сильно, поэтому вопрос классификации очень важен для дальнейшего изучения этой темы!

Начнем с несолеобразующих оксидов . Их нужно запомнить: NO, SiO, CO, N 2 O. Просто выучите эти четыре формулы!

Для дальнейшего продвижения мы должны вспомнить, что в природе существуют два типа простых веществ - металлы и неметаллы (иногда выделяют еще группу полуметаллов или металлоидов). Если вы четко понимаете, какие элементы относятся к металлам, продолжайте читать эту статью. Если есть малейшие сомнения, обратитесь к материалу "Металлы и неметаллы" на этом сайте.

Итак, сообщаю вам, что все амфотерные оксиды являются оксидами металлов, но не все оксиды металлов относятся к амфотерным. Я перечислю наиболее важные из них: BeO, ZnO, Al 2 O 3 , Cr 2 O 3 , SnO. Список не является полным, но перечисленные формулы следует обязательно запомнить! В большинстве амфотерных оксидов металл проявляет степень окисления +2 или +3 (но есть исключения).

В следующей части статьи мы продолжим говорить о классификации; обсудим кислотные и основные оксиды.

Вы можете приобрести видеоурок (запись вебинара, 1,5 часа) и комплект теории по теме «Оксиды: получение и химические свойства». Стоимость материалов — 500 рублей. Оплата через систему Яндекс.Деньги (Visa, Mastercard, МИР, Maestro) по ссылке .

Внимание! После оплаты необходимо прислать сообщение с пометкой «Оксиды» с указанием адреса электронной почты, на которую можно выслать ссылку для скачивания и просмотра вебинара. В течение суток после оплаты заказа и получения сообщения материалы вебинара поступят на вашу почту. Сообщение можно прислать одним из следующих способов:

  • через смс, Viber или whatsapp на номер +7-977-834-56-28;
  • через e-mail: [email protected]

Без сообщения мы не сможем идентифицировать платеж и отправить Вам материалы.

Химические свойства кислотных оксидов

1. Кислотные оксиды взаимодействуют с основными оксидами и основаниями с образованием солей.

При этом действует правило — хотя бы одному из оксидов должен соответствовать сильный гидроксид (кислота или щелочь).

Кислотные оксиды сильных и растворимых кислот взаимодействуют с любыми основными оксидами и основаниями:

SO 3 + CuO = CuSO 4

SO 3 + Cu(OH) 2 = CuSO 4 + H 2 O

SO 3 + 2NaOH = Na 2 SO 4 + H 2 O

SO 3 + Na 2 O = Na 2 SO 4

Кислотные оксиды нерастворимых в воде и неустойчивых или летучих кислот взаимодействуют только с сильными основаниями (щелочами) и их оксидами. При этом возможно образование кислых и основных солей, в зависимости от соотношения и состава реагентов.

Например , оксид натрия взаимодействует с оксидом углерода (IV), а оксид меди (II), которому соответствует нерастворимое основание Cu(OH) 2 — практически не взаимодействует с оксидом углерода (IV):

Na 2 O + CO 2 = Na 2 CO 3

CuO + CO 2 ≠

2. Кислотные оксиды взаимодействуют с водой с образованием кислот.

Исключение оксид кремния, которому соответствует нерастворимая кремниевая кислота. Оксиды, которым соответствуют неустойчивые кислоты, как правило, реагируют с водой обратимо и в очень малой степени.

SO 3 + H 2 O = H 2 SO 4

3. Кислотные оксиды взаимодействуют с амфотерными оксидами и гидроксидами с образованием соли или соли и воды.

Обратите внимание — с амфотерными оксидами и гидроксидами взаимодействуют, как правило, только оксиды сильных или средних кислот!

Например , ангидрид серной кислоты (оксид серы (VI)) взаимодействует с оксидом алюминия и гидроксидом алюминия с образованием соли — сульфата алюминия:

3SO 3 + Al 2 O 3 = Al 2 (SO 4) 3

3SO 3 + 2Al(OH) 3 = Al 2 (SO 4) 3 + 3H 2 O

А вот оксид углерода (IV), которому соответствует слабая угольная кислота, с оксидом алюминия и гидроксидом алюминия уже не взаимодействует:

CO 2 + Al 2 O 3 ≠

CO 2 + Al(OH) 3 ≠

4. Кислотные оксиды взаимодействуют с солями летучих кислот.

При этом действует правило: в расплаве менее летучие кислоты и их оксиды вытесняют более летучие кислоты и их оксиды из их солей .

Например , твердый оксид кремния SiO 2 вытеснит более летучий углекислый газ из карбоната кальция при сплавлении:

CaCO 3 + SiO 2 = CaSiO 3 + CO 2

5. Кислотные оксиды способны проявлять окислительные свойства.

Как правило, оксиды элементов в высшей степени окисления — типичные (SO 3 , N 2 O 5 , CrO 3 и др.) . Сильные окислительные свойства проявляют и некоторые элементы с промежуточной степенью окисления (NO 2 и др.).

6. Восстановительные свойства.

Восстановительные свойства, как правило, проявляют оксиды элементов в промежуточной степени окисления (CO, NO, SO 2 и др.). При этом они окисляются до высшей или ближайшей устойчивой степени окисления.

Например , оксид серы (IV) окисляется кислородом до оксида серы (VI):

2SO 2 + O 2 = 2SO 3

Na 2 О + H 2 O = 2NaОH;

CaO + H 2 O = Ca(OH) 2 ;

    с соединениями кислотного характера (кислотными оксидами, кислотами) с образованием солей и воды:

CaO + СО 2 = СаСО 3 ;

CaO + 2HCl = CaCl 2 + H 2 O;

3) с соединениями амфотерного характера:

Li 2 O + Al 2 O 3 = 2Li AlO 2 ;

3NaOH + Al(OН) 3 = Na 3 AlO 3 + 3Н 2 О;

Кислотные оксиды реагируют:

1) с водой с образованием кислот:

SO 3 + H 2 O = H 2 SO 4 ;

2) с соединениями основного характера (основными оксидами и основаниями) с образованием солей и воды:

SO 2 + Na 2 O = Na 2 SO 3 ;

CO 2 + 2NaОH = Na 2 CO 3 + H 2 O;

    с соединениями амфотерного характера

СО 2 + ZnO = ZnCO 3 ;

СО 2 + Zn(OH) 2 = ZnСО 3 + H 2 O;

Амфотерные оксиды проявляют свойства как основных, так и кислотных оксидов. Им отвечают амфотерные гидроксиды:

кислая среда щелочная среда Ве(ОН) 2 ВеО Н 2 ВеО 2

Zn(OH) 2 ZnO Н 2 ZnО 2

Аl(OН) 3 Al 2 O 3 H 3 AlО 3 , НАlO 2

Cr(OН) 3 Сr 2 O 3 HCrO 2

Pb(OH) 2 PbO Н 2 PbО 2

Sn(OH) 2 SnO Н 2 SnО 2

Амфотерные оксиды взаимодействуют с соеднинениями кислого и основного характера:

ZnO + SiO 2 = ZnSiO 3 ;

ZnO + H 2 SiO 3 = ZnSiO 3 + H 2 O;

Al 2 O 3 + 3Na 2 O = 2Na 3 AlO 3 ;

Al 2 O 3 + 2NaOH = 2NaAlO 2 + H 2 O.

Металлы с переменной валентностью могут образовывать оксиды всех трех типов. Например:

CrO основной Cr(OH) 2 ;

Cr 2 O 3 амфотерный Cr(OH) 3 ;

Cr 2 O 7 кислотный H 2 Cr 2 O 7 ;

MnO, Mn 2 O 3 основной;

MnO 2 амфотерный;

Mn 2 O 7 кислотный HMnO 4 .

    Основания

Основания – сложные вещества, в состав которых входят атомы металла и одна или несколько гидроксидных групп (ОН ‾). Общая формула оснований – Ме(ОН) у, где у – число гидроксидных групп, равное валентности металла.

      Номенклатура

Название основания складывается из слова «гидроксид» + название металла.

Если металл имеет переменную валентность, то ее указывают в конце в скобках. Например: CuOH – гидроксид меди (I), Cu(OH) 2 – гидроксид меди (II), NaОH – гидроксид натрия.

Основания (гидроксиды) являются электролитами. Электролитами называются вещества, которые в расплавах или растворах полярных жидкостей распадаются на ионы: положительно заряженные катионы и отрицательно заряженные анионы. Распад вещества на ионы на­зывается электролитической диссоциацией.

Bсe электролиты можно разделить на две группы: сильные и слабые. Сильные электролиты в водных растворах диссоциированы практически нацело. Слабые электролиты диссоциируют только частично и в растворах устанавливается динамическое равновесие между недиссоциированными молекулами и ионами: NН 4 ОН NH 4 + + ОН - .

2.2. Классификация

а) по числу гидроксидных групп в молекуле. Количество гидроксидных групп в молекуле основания зависит от валентности металла и определяет кислотность основания.

Основания делятся на:

Однокислотные, молекулы которых содержат одну гидроксидную группу: NaOH, KOH, LiOH и др.;

Двухкислотные, молекулы которых содержат две гидроксидные группы: Ca(OH) 2 , Fe(OH) 2 и др.;

Трехкислотные, молекулы которых содержат три гидроксидные группы: Ni(OH) 3 , Bi(OH) 3 и др.

Двух- и трехкислотные основания называются многокислотными.

б) по силе основания делятся на:

Сильные (щелочи): LiOH, NaOH, KOH, RbOH, CsOH, Ca(OH) 2 , Sr(OH) 2 , Ba(OH) 2 ;

Слабые: Cu(OH) 2 , Fe(OH) 2 , Fe(OH) 3 и др.

Сильные основания растворимы в воде, а слабые – нерастворимы.

Диссоциация оснований

Сильные основания диссоциируют практически полностью:

Са(ОН) 2 = Са 2+ + 2ОН - .

Слабые основания диссоциируют ступенчато. При после­довательном отщеплении гидроксид-иона от многокислотных основа­ний образуются основные остатки гидроксокатионы, например:

Fe(OH) 3 OH - + Fe(OH) 2 + дигидроксокатионы железа;

Fe(OH) 2 + OH - + FeOH 2+ гидроксокатионы железа;

Fe(OH) 2+ OH - + Fe 3+ катионы железа.

Число основных остатков равно кислотности основания.

Оксидами называются сложные вещества, в состав молекул которых входят атомы кислорода в степни окисления – 2 и какого-нибудь другого элемента.

могут быть получены при непосредственном взаимодействии кислорода с другим элементом, так и косвенным путём (например, при разложении солей, оснований, кислот). В обычных условиях оксиды бывают в твёрдом, жидком и газообразном состоянии, этот тип соединений весьма распространён в природе. Оксиды содержатся в Земной коре. Ржавчина, песок, вода, углекислый газ – это оксиды.

Они бывают солеобразующими и несолеобразующие.

Солеобразующие оксиды – это такие оксиды, которые в результате химических реакций образуют соли. Это оксиды металлов и неметаллов, которые при взаимодействии с водой образуют соответствующие кислоты, а при взаимодействии с основаниями – соответствующие кислые и нормальные соли. Например, оксид меди (CuO) является оксидом солеобразующим, потому что, например, при взаимодействии её с соляной кислотой (HCl) образуется соль:

CuO + 2HCl → CuCl 2 + H 2 O.

В результате химических реакций можно получать и другие соли:

CuO + SO 3 → CuSO 4 .

Несолеобразующими оксидами называются такие оксиды, которые не образуют солей. Примером могут служить СО, N 2 O, NO.

Солеобразующие оксиды в свою очередь бывают 3-х типов: основными (от слова « основание» ), кислотными и амфотерными.

Основными оксидами называются такие оксиды металлов, которым соответствуют гидроксиды, относящиеся к классу оснований. К основным оксидам относятся, например, Na 2 O, K 2 O, MgO, CaO и т.д.

Химические свойства основных оксидов

1. Растворимые в воде основные оксиды вступают в реакцию с водой, образуя основания:

Na 2 O + H 2 O → 2NaOH.

2. Взаимодействуют с кислотными оксидами, образуя соответствующие соли

Na 2 O + SO 3 → Na 2 SO 4 .

3. Реагируют с кислотами, образуя соль и воду:

CuO + H 2 SO 4 → CuSO 4 + H 2 O.

4. Реагируют с амфотерными оксидами:

Li 2 O + Al 2 O 3 → 2LiAlO 2 .

Если в составе оксидов в качестве второго элемента будет неметалл или металл, проявляющий высшую валентность (обычно проявляют от IV до VII), то такие оксиды будут кислотными. Кислотными оксидами (ангидридами кислот) называются такие оксиды, которым соответствуют гидроксиды, относящие к классу кислот. Это, например, CO 2 , SO 3 , P 2 O 5 , N 2 O 3 , Cl 2 O 5 , Mn 2 O 7 и т.д. Кислотные оксиды растворяются в воде и щелочах, образуя при этом соль и воду.

Химические свойства кислотных оксидов

1. Взаимодействуют с водой, образуя кислоту:

SO 3 + H 2 O → H 2 SO 4 .

Но не все кислотные оксиды непосредственно реагируют с водой (SiO 2 и др.).

2. Реагируют с основанными оксидами с образованием соли:

CO 2 + CaO → CaCO 3

3. Взаимодействуют со щелочами, образуя соль и воду:

CO 2 + Ba(OH) 2 → BaCO 3 + H 2 O.

В состав амфотерного оксида входит элемент, который обладает амфотерными свойствами. Под амфотерностью понимают способность соединений проявлять в зависимости от условий кислотные и основные свойства. Например, оксид цинка ZnO может быть как основанием, так и кислотой (Zn(OH) 2 и H 2 ZnO 2). Амфотерность выражается в том, что в зависимости от условий амфотерные оксиды проявляют либо осно́вные, либо кислотные свойства.

Химические свойства амфотерных оксидов

1. Взаимодействуют с кислотами, образуя соль и воду:

ZnO + 2HCl → ZnCl 2 + H 2 O.

2. Реагируют с твёрдыми щелочами (при сплавлении), образуя в результате реакции соль – цинкат натрия и воду:

ZnO + 2NaOH → Na 2 ZnO 2 + H 2 O.

При взаимодействии оксида цинка с раствором щелочи (того же NaOH) протекает другая реакция:

ZnO + 2 NaOH + H 2 O => Na 2 .

Координационное число – характеристика, которая определяет число ближайших частиц: атомов или инов в молекуле или кристалле . Для каждого амфотерного металла характерно свое координационное число. Для Be и Zn – это 4; Для и Al – это 4 или 6; Для и Cr – это 6 или (очень редко) 4;

Амфотерные оксиды обычно не растворяются в воде и не реагируют с ней.

Остались вопросы? Хотите знать больше об оксидах?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.