Критерий манна уитни что изучает. Критерий U Манна — Уитни

Материал из Википедии - свободной энциклопедии

U-критерий Манна - Уитни (англ. Mann - Whitney U-test ) - статистический критерий , используемый для оценки различий между двумя независимыми выборками по уровню какого-либо признака, измеренного количественно. Позволяет выявлять различия в значении параметра между малыми выборками.

Другие названия: критерий Манна - Уитни - Уилкоксона (англ. Mann - Whitney - Wilcoxon, MWW ), критерий суммы рангов Уилкоксона (англ. Wilcoxon rank-sum test ) или критерий Уилкоксона - Манна - Уитни (англ. Wilcoxon - Mann - Whitney test ). Реже: критерий числа инверсий .

История

Данный метод выявления различий между выборками был предложен в 1945 году Фрэнком Уилкоксоном (F. Wilcoxon ). В 1947 году он был существенно переработан и расширен Х. Б. Манном (H. B. Mann ) и Д. Р. Уитни (D. R. Whitney ), по именам которых сегодня обычно и называется.

Описание критерия

Простой непараметрический критерий. Мощность критерия выше, чем у Q-критерия Розенбаума .

Этот метод определяет, достаточно ли мала зона перекрещивающихся значений между двумя рядами (ранжированным рядом значений параметра в первой выборке и таким же во второй выборке). Чем меньше значение критерия, тем вероятнее, что различия между значениями параметра в выборках достоверны.

Ограничения применимости критерия

  1. В каждой из выборок должно быть не менее 3 значений признака. Допускается, чтобы в одной выборке было два значения, но во второй тогда не менее пяти.
  2. В выборочных данных не должно быть совпадающих значений (все числа - разные) или таких совпадений должно быть очень мало.

Использование критерия

Для применения U-критерия Манна - Уитни нужно произвести следующие операции.

  1. Составить единый ранжированный ряд из обеих сопоставляемых выборок, расставив их элементы по степени нарастания признака и приписав меньшему значению меньший ранг. Общее количество рангов получится равным: N=n_1+n_2, где n_1 - количество элементов в первой выборке, а n_2 - количество элементов во второй выборке.
  2. Разделить единый ранжированный ряд на два, состоящие соответственно из единиц первой и второй выборок. Подсчитать отдельно сумму рангов, пришедшихся на долю элементов первой выборки, и отдельно - на долю элементов второй выборки. Определить большую из двух ранговых сумм (T_x), соответствующую выборке с n_x элементами.
  3. Определить значение U-критерия Манна - Уитни по формуле: U=n_1\cdot n_2+\frac{n_x\cdot(n_x+1)}{2}-T_x.
  4. По таблице для избранного уровня статистической значимости определить критическое значение критерия для данных n_1 и n_2. Если полученное значение U меньше табличного или равно ему, то признается наличие существенного различия между уровнем признака в рассматриваемых выборках (принимается альтернативная гипотеза). Если же полученное значение U больше табличного, принимается нулевая гипотеза . Достоверность различий тем выше, чем меньше значение U.
  5. При справедливости нулевой гипотезы критерий имеет математическое ожидание M(U)=\frac{n_1\cdot n_2}{2} и дисперсию D(U)=\frac{n_1\cdot n_2\cdot (n_1+n_2+1)}{12} и при достаточно большом объёме выборочных данных (n_1>19,\;n_2>19) распределён практически нормально.

Таблица критических значений

См. также

  • Критерий Краскела - Уоллиса - многомерное обобщение U-критерия Манна - Уитни.

Напишите отзыв о статье "U-критерий Манна - Уитни"

Примечания

Литература

  • Mann H. B., Whitney D. R. On a test of whether one of two random variables is stochastically larger than the other. // Annals of Mathematical Statistics. - 1947. - № 18. - P. 50-60.
  • Wilcoxon F. Individual Comparisons by Ranking Methods. // Biometrics Bulletin 1. - 1945. - P. 80-83.
  • Гублер Е. В., Генкин А. А. Применение непараметрических критериев статистики в медико-биологических исследованиях. - Л., 1973.
  • Сидоренко Е. В. Методы математической обработки в психологии. - С-Пб., 2002.

Отрывок, характеризующий U-критерий Манна - Уитни

Он забылся на одну минуту, но в этот короткий промежуток забвения он видел во сне бесчисленное количество предметов: он видел свою мать и ее большую белую руку, видел худенькие плечи Сони, глаза и смех Наташи, и Денисова с его голосом и усами, и Телянина, и всю свою историю с Теляниным и Богданычем. Вся эта история была одно и то же, что этот солдат с резким голосом, и эта то вся история и этот то солдат так мучительно, неотступно держали, давили и все в одну сторону тянули его руку. Он пытался устраняться от них, но они не отпускали ни на волос, ни на секунду его плечо. Оно бы не болело, оно было бы здорово, ежели б они не тянули его; но нельзя было избавиться от них.
Он открыл глаза и поглядел вверх. Черный полог ночи на аршин висел над светом углей. В этом свете летали порошинки падавшего снега. Тушин не возвращался, лекарь не приходил. Он был один, только какой то солдатик сидел теперь голый по другую сторону огня и грел свое худое желтое тело.
«Никому не нужен я! – думал Ростов. – Некому ни помочь, ни пожалеть. А был же и я когда то дома, сильный, веселый, любимый». – Он вздохнул и со вздохом невольно застонал.
– Ай болит что? – спросил солдатик, встряхивая свою рубаху над огнем, и, не дожидаясь ответа, крякнув, прибавил: – Мало ли за день народу попортили – страсть!
Ростов не слушал солдата. Он смотрел на порхавшие над огнем снежинки и вспоминал русскую зиму с теплым, светлым домом, пушистою шубой, быстрыми санями, здоровым телом и со всею любовью и заботою семьи. «И зачем я пошел сюда!» думал он.
На другой день французы не возобновляли нападения, и остаток Багратионова отряда присоединился к армии Кутузова.

Князь Василий не обдумывал своих планов. Он еще менее думал сделать людям зло для того, чтобы приобрести выгоду. Он был только светский человек, успевший в свете и сделавший привычку из этого успеха. У него постоянно, смотря по обстоятельствам, по сближениям с людьми, составлялись различные планы и соображения, в которых он сам не отдавал себе хорошенько отчета, но которые составляли весь интерес его жизни. Не один и не два таких плана и соображения бывало у него в ходу, а десятки, из которых одни только начинали представляться ему, другие достигались, третьи уничтожались. Он не говорил себе, например: «Этот человек теперь в силе, я должен приобрести его доверие и дружбу и через него устроить себе выдачу единовременного пособия», или он не говорил себе: «Вот Пьер богат, я должен заманить его жениться на дочери и занять нужные мне 40 тысяч»; но человек в силе встречался ему, и в ту же минуту инстинкт подсказывал ему, что этот человек может быть полезен, и князь Василий сближался с ним и при первой возможности, без приготовления, по инстинкту, льстил, делался фамильярен, говорил о том, о чем нужно было.
Пьер был у него под рукою в Москве, и князь Василий устроил для него назначение в камер юнкеры, что тогда равнялось чину статского советника, и настоял на том, чтобы молодой человек с ним вместе ехал в Петербург и остановился в его доме. Как будто рассеянно и вместе с тем с несомненной уверенностью, что так должно быть, князь Василий делал всё, что было нужно для того, чтобы женить Пьера на своей дочери. Ежели бы князь Василий обдумывал вперед свои планы, он не мог бы иметь такой естественности в обращении и такой простоты и фамильярности в сношении со всеми людьми, выше и ниже себя поставленными. Что то влекло его постоянно к людям сильнее или богаче его, и он одарен был редким искусством ловить именно ту минуту, когда надо и можно было пользоваться людьми.
Пьер, сделавшись неожиданно богачом и графом Безухим, после недавнего одиночества и беззаботности, почувствовал себя до такой степени окруженным, занятым, что ему только в постели удавалось остаться одному с самим собою. Ему нужно было подписывать бумаги, ведаться с присутственными местами, о значении которых он не имел ясного понятия, спрашивать о чем то главного управляющего, ехать в подмосковное имение и принимать множество лиц, которые прежде не хотели и знать о его существовании, а теперь были бы обижены и огорчены, ежели бы он не захотел их видеть. Все эти разнообразные лица – деловые, родственники, знакомые – все были одинаково хорошо, ласково расположены к молодому наследнику; все они, очевидно и несомненно, были убеждены в высоких достоинствах Пьера. Беспрестанно он слышал слова: «С вашей необыкновенной добротой» или «при вашем прекрасном сердце», или «вы сами так чисты, граф…» или «ежели бы он был так умен, как вы» и т. п., так что он искренно начинал верить своей необыкновенной доброте и своему необыкновенному уму, тем более, что и всегда, в глубине души, ему казалось, что он действительно очень добр и очень умен. Даже люди, прежде бывшие злыми и очевидно враждебными, делались с ним нежными и любящими. Столь сердитая старшая из княжен, с длинной талией, с приглаженными, как у куклы, волосами, после похорон пришла в комнату Пьера. Опуская глаза и беспрестанно вспыхивая, она сказала ему, что очень жалеет о бывших между ними недоразумениях и что теперь не чувствует себя вправе ничего просить, разве только позволения, после постигшего ее удара, остаться на несколько недель в доме, который она так любила и где столько принесла жертв. Она не могла удержаться и заплакала при этих словах. Растроганный тем, что эта статуеобразная княжна могла так измениться, Пьер взял ее за руку и просил извинения, сам не зная, за что. С этого дня княжна начала вязать полосатый шарф для Пьера и совершенно изменилась к нему.

U-критерий является ранговым , поэтому он инвариантен по отношению к любому монотонному преобразованию шкалы измерения.

Другие названия: критерий Манна-Уитни-Уилкоксона (Mann-Whitney-Wilcoxon, MWW), критерий суммы рангов Уилкоксона (Wilcoxon rank-sum test) или критерий Уилкоксона-Манна-Уитни (Wilcoxon-Mann-Whitney test, WMW).

Примеры задач

Пример 1. Первая выборка - это пациенты, которых лечили препаратом А. Вторая выборка - пациенты, которых лечили препаратом Б. Значения в выборках - это некоторая характеристика эффективности лечения (уровень метаболита в крови, температура через три дня после начала лечения, срок выздоровления, число койко-дней, и т.д.) Требуется выяснить, имеется ли значимое различие эффективности препаратов А и Б, или различия являются чисто случайными и объясняются «естественной» дисперсией выбранной характеристики.

Пример 2. Первая выборка - это поля, обработанные агротехническим методом А. Вторая выборка - поля, обработанные агротехническим методом Б. Значения в выборках - это урожайность. Требуется выяснить, является ли один из методов эффективнее другого, или различия урожайности обусловлены случайными факторами.

Пример 3. Первая выборка - это дни, когда в супермаркете проходила промо-акция типа А (красные ценники со скидкой). Вторая выборка - дни промо-акции типа Б (каждая пятая пачка бесплатно). Значения в выборках - это показатель эффективности промо-акции (объём продаж, либо выручка в рублях). Требуется выяснить, какой из типов промо-акции более эффективен.

Описание критерия

Заданы две выборки .

Дополнительные предположения:

Иногда ошибочно считают, что U-критерий проверяет нулевую гипотезу равенства медиан в двух выборках. Существуют распределения, для которых гипотеза верна, но их медианы различны.

U-критерий можно применять для проверки гипотезы сдвига в качестве альтернативной , где - некоторая константа, отличная от нуля. При этой альтернативе U-критерий является состоятельным . Его целесообразно применять, если одним и тем же прибором проводятся две серии измерений двух значений некоторой физической величины. При этом функция распределения описывает погрешности измерения одного значения, а - другого. Однако во многих приложениях (в частности, эконометрических) нет особых оснований предполагать, что распределение второй выборки лишь сдвигается, но не меняется каким-либо иным образом.

U-критерий является непараметрическим аналогом критерия Стьюдента . Если выборки нормальные , то для проверки гипотезы сдвига предпочтительно применить более мощный критерий Стьюдента.

История

Данный метод выявления различий между выборками был предложен в 1945 году Френком Уилкоксоном. В 1947 году он был существенно переработан и расширен Манном и Уитни, по именам которых сегодня обычно и называется.

Литература

  1. Mann H. B., Whitney D. R. On a test of whether one of two random variables is stochastically larger than the other. // Annals of Mathematical Statistics. - 1947, №18. - Pp. 50-60.
  2. Wilcoxon F. Individual Comparisons by Ranking Methods. // Biometrics Bulletin 1. 1945. - Pp. 80–83.
  3. Орлов А. И. Эконометрика. - М.: Экзамен, 2003. - 576 с. (§4.5 Какие гипотезы можно проверять с помощью двухвыборочного критерия Вилкоксона?)
  4. Кобзарь А. И. Прикладная математическая статистика. - М.: Физматлит, 2006. - 816 с.

Критерий в математической статистике - это строгое правило, в соответствии с которым гипотеза с определённым уровнем значимости принимается или отвергается. Чтобы построить его, необходимо найти определенную функцию. Она должна зависеть от конечных результатов эксперимента, то есть от эмпирически найденных значений. Именно эта функция будет являться инструментом оценки расхождения между выборками.

Статистически значимая величина. Общие сведения

Статистическая значимость - это величина, вероятность случайного возникновения которой очень мала. Незначительны также и более крайние ее показатели. Разницу называют статистически значимой в том случае, если существуют данные, вероятность появления которых незначительна, если утверждать, что эти расхождения не существуют. Но это не значит вовсе, что эта разница обязательно должна быть велика и значима.

Уровень статистической достоверности теста

Под данным термином следует понимать вероятность отклонения нулевой гипотезы в случае её истинности. Это также называется ошибкой первого рода или ложноположительным решением. В большинстве случаев процесс опирается на p-величину ("пи-величина"). Это накопленная вероятность при наблюдении за уровнем статистического критерия. Он, в свою очередь, насчитывается по выборке во время принятия нулевой гипотезы. Предположение будет отвергнуто, если эта p-величина будет меньше заявленного аналитиком уровня. От этого показателя зависит напрямую значимость тестовой величины: чем она меньше, тем, соответственно, и больше оснований отвергнуть гипотезу.

Уровень значимости, как правило, обозначается буквой б (альфа). Популярные показатели среди специалистов: 0,1%, 1%, 5% и 10%. Если, скажем, говорится, что шансы на совпадения равны 1 к 1000, то определённо речь идёт об уровне 0,1% статистической значимости случайной величины. Различные по значению б-уровни имеют свои плюсы и минусы. Если показатель меньше, то больше вероятность, что альтернативная гипотеза значимая. Хотя при этом возможен риск, что ложное нулевое предположение не будет отвергнуто. Можно сделать вывод, что выбор оптимального б-уровня зависит от баланса "значимость-мощность" или, соответственно, от компромисса вероятностей ложноположительного и ложноотрицательного решений. Синонимом "статистической значимости" в отечественной литературе является термин "достоверность".

Определение нулевой гипотезы

В математической статистике проверяемое на согласованность с уже имеющимися в запасе эмпирическими данными. В большинстве случаев в качестве нулевой гипотезы берётся гипотеза о том, что корреляция между исследуемыми переменными отсутствует или что в изучаемых распределениях нет различий однородности. При стандартных исследованиях математик пытается опровергнуть нулевую гипотезу, то есть доказать, что она не согласована с экспериментально полученными данными. Причем должно иметь место и альтернативное предположение, которое принимается вместо нулевого.

Ключевое определение

Критерий U (Манна-Уитни) в позволяет оценивать различия двух выборок. Они могут быть даны по уровню некоего признака, который измерен количественно. Этот метод идеален для оценки различий малых выборок. Этот простой критерий был предложен Фрэнком Уилкоксоном в 1945 году. А уже в 1947 году метод был пересмотрен и дополнен учёными Х. Б. Манном и Д. Р. Уитни, именами которых он и именуется по сей день. Критерий Манна-Уитни в психологии, математике, статистике и во многих других науках является одним из основополагающих элементов математического обоснования результатов теоретических исследований.

Описание

Критерий Манна-Уитни - относительно простой метод без параметров. Его мощность значительна. Она существенно выше, чем мощность Q-критерия Розенбаума. Метод оценивает, насколько мала область перекрёстных значений между выборками, а именно между ранжированными рядами значений первой и второй подборки. Чем значение критерия меньше, тем больше вероятность, что расхождения значений параметра достоверны. Чтобы корректно применить критерий U (Манна-Уитни), не стоит забывать о некоторых ограничениях. В каждой выборке должно быть как минимум 3 значения признака. Возможна ситуация, когда в одном случае значений два, но во втором обязательно тогда их должно быть хотя бы пять. В исследуемых выборках должно быть минимальное количество совпадающих показателей. Все числа должны быть разными в идеальном случае.

Использование

Как правильно использовать критерий Манна-Уитни? Таблица, которая составлена по данному методу, содержит определенные критические значения. Для начала нужно создать единый ряд из обеих сопоставленных выборок, который затем ранжируется. То есть элементы выстраиваются по степени нарастания признака, и меньший ранг присваивается меньшему значению. В итоге получим такое общее число рангов:

N = N1 + N2,

где величины N1 и N2 - количество единиц, содержащихся в первой и второй выборках соответственно. Далее единый ранжированный ряд значений делится на две категории. Единицы, соответственно, из первой и второй выборок. Теперь считается по очереди сумма рангов значений в первом и во втором рядах. Определяется большая из них (Tx), которая соответствует выборке с nx единицами. Чтобы использовать метод Уилкоксона далее, вычисляется его значение по следующей методике. Необходимо по таблице для выбранного уровня значимости выяснить критическое значение этого критерия для конкретно взятых N1 и N2.

Получившийся показатель может быть меньше или равен значению из таблицы. В этом случае констатируется значительное различие уровней признака в исследуемых выборках. Если полученное значение больше табличного, тогда нулевая гипотеза принимается. Когда производится расчет критерия Манна-Уитни, следует заметить, что если нулевая гипотеза справедлива, критерий будет иметь а также дисперсию. Отметим, что при достаточно больших объёмах данных выборок метод считается практически нормально распределенным. Достоверность различий тем выше, чем меньшее значение принимает критерий Манна-Уитни.

Где T x - наибольшая сумма рангов, n x - наибольшая из объемов выборок n 1 и n 2 .

Назначение сервиса . С помощью данного онлайн-калькулятора производится расчет U критерия Манна-Уитни .

Назначение критерия

Критерий предназначен для оценки различий между двумя выборками по уровню какого-либо признака, количественно измеренного. Он позволяет выявлять различия между малыми выборками, когда n 1 , n 2 ≥ 3 или n 1 =2, n 2 ≥ 5. В каждой выборке должно быть не более 60 наблюдений.
Этот метод определяет, достаточно ли мала зона перекрещивающихся значений между двумя рядами. Положим, что первым рядом (выборкой, группой) мы называем тот ряд значений, в котором значения, по предварительной оценке, выше, а вторым рядом - тот, где они предположительно ниже.
Чем меньше область перекрещивающихся значений, тем более вероятно, что различия достоверны. Иногда эти различия называют различиями в расположении двух выборок.
Эмпирическое значение критерия U отражает то, насколько велика зона совпадения между рядами. Поэтому чем меньше U эмп, тем более вероятно, что различия достоверны.

Гипотезы
H 0: Уровень признака в группе 2 не ниже уровня признака в группе 1.
H 1: Уровень признака в группе 2 ниже уровня признака в группе 1.

Алгоритм расчета критерия Манна-Уитни

  1. Объединить все данные в единый ряд, пометив данные, принадлежащие разным выборкам.
  2. Проранжировать значения , приписывая меньшему значению меньший ранг. Всего рангов получится (n 1 + n 2).
  3. Подсчитать сумму рангов отдельно для каждой выборки.
  4. Определить большую из двух ранговых сумм.
  5. Определить значение U по формуле:
    U = n 1 ·n 2 + n x ·(n x + 1)/2 – T x ,
    где n 1 – объем выборки №1; n 2 – объем выборки №2; T x – большая из двух ранговых сумм; n x – объем максимальной выборки: n x = max(n 1 , n 2).
  6. Определить критические значения U кр по таблице . Если U эмп > U кр (0,05). H 0 принимается. Если U эмп ≤ U кр (0,05) H 0 отвергается. Чем меньше значения U, тем достоверность различий выше.

Пример . У предполагаемых участников психологического эксперимента был измерен уровень вербального и невербального интеллекта с помощью методики Д. Векслера. Было обследовано две группы юношей в возрасте от 18 до 24 лет студентов физического факультета и психологического факультета. Показатели вербального интеллекта представлены в таблице. Можно ли утверждать, что одна из групп превосходит другую по уровню вербального интеллекта?

Ф П
135 130
130 129
131 121
128 129
127 119
137 124
126 125
137 129
131 129
137 130
137 131
127 123
133
125

Сравнение результатов показывает, что значения выборки X несколько выше, чем выборки Y, поэтому первой считаем выборку X.
Таким образом, нам требуется определить, можно ли считать имеющуюся разницу между баллами существенной.
Решение .
Проранжируем представленную таблицу. При ранжировании объединяем две выборки в одну. Ранги присваиваются в порядке возрастания значения измеряемой величины, т.е. наименьшему рангу соответствует наименьший балл. Заметим, что в случае совпадения баллов для нескольких учеников ранг такого балла следует считать, как среднее арифметическое тех позиций, которые занимают данные баллы при их расположении в порядке возрастания.
Так как в матрице имеются связанные ранги (одинаковый ранговый номер) 1-го ряда, произведем их переформирование. Переформирование рангов производиться без изменения важности ранга, то есть между ранговыми номерами должны сохраниться соответствующие соотношения (больше, меньше или равно). Также не рекомендуется ставить ранг выше 1 и ниже значения равного количеству параметров (в данном случае n = 26). Переформирование рангов производится в табл.
Номера мест в упорядоченном ряду Расположение факторов по оценке эксперта Новые ранги
1 119 1
2 121 2
3 123 3
4 124 4
5 125 5.5
6 125 5.5
7 126 7
8 127 8.5
9 127 8.5
10 128 10
11 129 12.5
12 129 12.5
13 129 12.5
14 129 12.5
15 130 16
16 130 16
17 130 16
18 131 19
19 131 19
20 131 19
21 133 21
22 135 22
23 137 24.5
24 137 24.5
25 137 24.5
26 137 24.5

Используя предложенный принцип ранжирования, получим таблицу рангов.
X Ранг X Y Ранг Y
125 5.5 119 1
126 7 121 2
127 8.5 123 3
127 8.5 124 4
128 10 125 5.5
130 16 129 12.5
131 19 129 12.5
131 19 129 12.5
133 21 129 12.5
135 22 130 16
137 24.5 130 16
137 24.5 131 19
137 24.5
137 24.5
Сумма 234.5 Сумма 116.5

Этих данных достаточно, чтобы воспользоваться формулой расчёта эмпирического значения критерия:

Гипотеза H 0 о незначительности различий между выборками принимается, если U кр < u эмп. В противном случае H 0 отвергается и различие определяется как существенное.
где U kp - критическая точка, которую находят по таблице Манна-Уитни.
Найдем критическую точку U kp
По таблице находим U kp (0.05) = 45
Так как U kp > u эмп - принимаем альтернативную гипотезу H 1 ; различия в уровнях выборок можно считать существенными.

U-критерий Манна-Уитни используется для оценки различий между двумя малыми выборками (n1,n2≥3 или n1=2, n2≥5) по уровню колич

U -критерий Манна-Уитни используется для оценки различий между двумя малыми выборками(n 1 , n 2 ≥3 или n 1 =2, n 2 ≥5) по уровню количественно измеряемого признака. При этом первой выборкой принято считать ту, где значение признака больше.

Нулевая гипотеза H 0 ={уровень признака во второй выборке не ниже уровня признака в первой выборке}; альтернативная гипотеза – H 1 ={уровень признака во второй выборке ниже уровня признака в первой выборке}.

Рассмотрим алгоритм применения U-критерия Манна-Уитни:

1. Перенести все данные испытуемых на индивидуальные карточки, пометив карточки 1-й выборки одним цветом, а 2-й – другим.

2. Разложить все карточки в единый ряд по степени возрастания признака и проранжировать в таком порядке.

3. Вновь разложить карточки по цвету на две группы.

5. Определить большую из двух ранговых сумм .

6. Вычислить эмпирическое значение U :

, где - количество испытуемых в - выборке (i = 1, 2), - количество испытуемых в группе с большей суммой рангов.

7. Задать уровень значимости α и, используя специальную таблицу, определить критическое значение U кр (α) . Если , то H 0 на выбранном уровне значимости принимается.

Рассмотрим использование U критерия Манна-Уитни на примере.

Проведение срезовой контрольной работы по математике (алгебра и геометрия) в средней общеобразовательной школе дало следующие результаты по 10-балльной шкале для класса, обучающегося по программе «Развивающего обучения» (7 «Б»), и класса, обучающегося по традиционной системе (7 «А»):

Ученик \ Класс

7 «А» (баллы)

7 «Б» (баллы)

Определите, превосходят ли учащиеся 7 «Б» учащихся 7 «А» по уровню знаний по математике.

Сравнение результатов показывает, что баллы, полученный за контрольную работу, в 7 «Б» классе несколько выше, поэтому первой считаем выборку результатов 7 «Б» класса. Таким образом, нам требуется определить, можно ли считать имеющуюся разницу между баллами существенной. Если можно, то это будет означать, что класс, обучающийся по системе «развивающего обучения» имеет более качественные знания по математике. В противном случае, на выбранном уровне значимости различие окажется несущественным.

Для оценки различий между двумя малыми выборками (в данном примере их объёмы равны: n 1 =12, n 2 =11) используем критерий Манна-Уитни. Проранжируем представленную таблицу:

7 «Б» (баллы)

ранг

7 «А» (баллы)

ранг

22,5

22,5

20.5

20.5

16.5

16.5

16.5

16.5

11.5

16.5

11.5

16.5

11.5

11.5

Сумма:

1 68 .5

Сумма:

107.5

При ранжировании объединяем две выборки в одну. Ранги присваиваются в порядке возрастания значения измеряемой величины, т.е. наименьшему рангу соответствует наименьший балл. Заметим, что в случае совпадения баллов для нескольких учеников ранг такого балла следует считать, как среднее арифметическое тех позиций, которые занимают данные баллы при их расположении в порядке возрастания. Например, 4 балла получили 3 ученика (см. таблицу). Значит, первые 3 позиции в расположении займёт балл, равный 4. Поэтому ранг для 4 баллов – это среднее арифметическое для позиций 1, 2 и 3, или: . Аналогично рассуждаем при вычислении ранга для балла, равного 5. Такой балл получили двое учащихся. Значит, при распределении по возрастанию первые три позиции занимает балл, равный 4, а четвёртую и пятую позиции займёт балл, равный 5. Поэтому его ранг будет равен среднему арифметическому между числами 4 и 5, т.е. 4.5.

Используя предложенный принцип ранжирования, получим таблицу рангов. Заметим, что выбор среднего арифметического в качестве ранга применяется при любом ранжировании, в том числе необходимого и для вычисления других критериев достоверности или же коэффициента корреляции Спирмена.

Чтобы использовать критерий Манна-Уитни, рассчитаем суммы рангов рассматриваемых выборок (см. таблицу). Сумма для первой выборки равна 168,5, для второй – 107,5. Обозначим наибольшую из этих сумм через T x (T x =168.5). Среди объёмов n 1 и n 2 выборок наибольший обозначим n x . Этих данных достаточно, чтобы воспользоваться формулой расчёта эмпирического значения критерия:

T x =168,5, n x =12>11= n 2 . Тогда:

Критическое значение критерия находим по специальной таблице. Пусть уровень значимости равен 0.05.

Гипотеза H 0 о незначительности различий между баллами двух классов принимается, если u кр < u эмп . В противном случае H 0 отвергается и различие определяется как существенное.

Следовательно, различия в уровне знаний по математике среди учащихся можно считать несущественными.

Схема использования критерия Манна-Уитни выглядит следующим образом