Ферменты, их строение. Отличие ферментов от неорганических катализаторов

Химическая природа ферментов

По строению различают ферменты-протеины, однокомпонентные и ферменты- протеиды, двухкомпонентные.

К группе ферментов-протеинов относят ферменты, построенные по типу простых белков, в отличие от которых фермент имеет активный центр. Наличие в их молекуле активного центра обеспечивает каталитическую активность фермента. К однокомпонентным ферментам относятся почти все ферменты желудочно-кишечного тракта.

Ферменты- протеиды - двухкомпонентные(холоферменты)-сложные белки. Состоят из белковой части(апофермент) и вещества небелковой части(кофермент). У некоторых ферментов апофермент и кофермент соединены так прочно, что при разрыве это связи фермент разрушается. Но есть ферменты, у которых связь непрочная. Роль апофермента и кофермента различна. Белковая часть обуславливает субстратную специфичность фермента, а кофермент, входя в состав каталитического центра фермента, обеспечивает специфичность действия фермента, тип реакции, который ведет фермент. Роль коферментов выполняют производные различный витаминов, металлы(железо, медь).

Строение активного центра фермента, его роль.

Активный центр-это совокупность функциональных групп аминокислотных остатков, расположенных на поверхности ферментов и строго ориентированных в пространстве за счет третичной и иногда четвертичной структуры ферментов. Акт.центр имеет 2 участка: а) субстратный(контактный или якорная площадка), обуславливающий субстратную специфичность фермента и обеспечивающий его взаимодействие с субстратом; б) каталитический центр, ответственный за химические преобразования субстрата, который обуславливает специфичность действия фермента.

Активный центр имеет форму узкого углубления или щели. В этом углублении присутствует несколько полярных аминокислотных остатков для связывания или катализа. Актив центры, занимают небольшую часть молекулы фермента. Остальная часть фермента сохраняет актив. Центр от разрушения.

Первоначальная модель акт.центра, предложенная Э.Фишером, трактовала взаимодействие субстрата и фермента по аналогии с системой КЛЮЧ-ЗАМОК , те считалось, что между активным центром фермента и субстратом должно иметься полное соответствие. Эта модель, которую иногда называли модель ЖЕСТКОЙ МАТРИЦЫ . В настоящее время считают, что полного соответствия между субстратом и ферментом нет, оно возникает в процессе взаимодействия субстрата и фермента(теория Кошленда или теория индуцированного соответствия).

Что такое аллостерический центр ферментов, его роль?

У некоторых ферментов имеется так называемый аллостерический центр, участвующий в регуляции активности активного центра. Единого мнения о местонахождении этого центра нет. По некоторым данным аллост.центр располагается неподалеку от активного центра. При действии аллостерических эффекторов на этот центр происходят конформационные изменения молекулы фермента, в том числе изменяется и топография активного центра, в результате чего повышается или уменьшается структурное сродство фермента к субстрату. Аллост. центр характерен только для ферментов, имеющих несколько субъединиц.

Механизм действия ферментов

В механизме ферментативного катализа различают 3 стадии:

1.Образование фермент-субстратного комплекса. Субстрат присоединяется к участку молекулы фермента, который называется активным центром, в нем различают якорные участки. Соединение идет за счет связей, характер которых зависит от химической природы субстрата. Н-р, если в молекуле субстрата имеются заряженные группы, то образование комплекса возможно за счет электростатического взаимодействия. Место, куда прикрепляется субстрат находится на поверхности молекулы фермента. Таких участков может быть 2-3, они находятся на определенном расстоянии друг от друга.

2.Образование комплекса фермент - продукты реакции. Функционально активные группы активного центра фермента действуют на субстрат, дестабилизируя связи. При таком взаимодействии изменяется конфигурация субстрата, происходит его деформация, поляризация молекулы субстрата, растяжение связи между отдельными участками субстрата, перераспределение электронов, что приводит к изменению расположения электрического заряда, к снижению энергии активации, и субстрат распадается.

3.Распад комплекса фермент – продукты реакции с выделением свободного фермента. Третья стадия более медленная и от нее зависит скорость все реакции. Выявлено, что в механизме действия ферментов большое значение имеет изменение структуры субстрата, приводящее к снижению энергии активации. Величина энергии активации у различных субстратов разные.

6. Специфичность ферментов: а)субстратная, б) специфичность действия.

Ферменты обладают специфичностью, т.е. избирательно действовать на определенный субстрат (субстратная специфичность) и ускорять определенную химическую реакцию (специфичность действия), т.е. специфичность действия – это способность ферментов производить с субстратом лишь одно из возможных химических превращений. Ферменты могут воздействовать на несколько субстратов, но при этом катализировать только одну определенную реакцию. Субстратная специфичность: если фермент катализирует превращение только одного субстрата, то специфичность абсолютная (аргиназа расщепляет аргинин). Если фермент катализирует превращение группы субстратов, объединенных одним типом связи, то такая специфичность называется относительной (пепсин расщепляет жиры и живот. и раст. происхождения). Стереохимическая специфичность обусловлена существованием оптических изомеров L- и D- форм или геометрических изомеров хим. веществ. Так фермент может действовать только на один из изомеров(фумараза катализирует превращение только фумаровой кислоты, но не действует на малеиновую кислоту)

7. Мощность действия ферментов . Большинство реакций, катализируемых ферментами, протекают в 10-100 раз быстрее, чем некатализируемые реакции. Для характеристики мощности действия ферментов введено понятие катал – число молекул субстрата, подвергающееся воздействию одной молекулы фермента в течение 1 минуты. Мощность большинства ферментов равна 1000 каталов, мощность действия каталазы – 1.000.000 каталов, амилазы – 240.000, а ацетилхолинэстеразы – более 1.000.000 каталов. Высокая мощность действия ферментов обуславливает высокую скорость химических процессов в организме.

8. Изоферменты, их диагностическое значение. Изоферменты – молекулярные формы ферментов, катализирующие одну и ту же реакцию с одним и тем же субстратом, но в различных условиях. Они различаются по строению апофермента, по физико-химическим свойствам, по сродству апофермента к субстрату. Коферменты изоферментов одинаковые, поэтому биологическое действие изоферментов одинаково. Клетки и органы различаются по содержанию тех или иных изоферментов, т.е. изоферменты обладают органотропностью. Это имеет большое диагностическое значение, так как при поражении того или иного органа в кровь выходят преимущественно определенные изоферменты, что позволяет провести органную диагностику. Н-р, лактатдегидрогиназа(ЛДГ), ускоряющая реакцию дегидрирования молочной кислоты, имеет 5 изоферментов с одинаковым коферментом – НАД. В состав апофермента ЛДГ входят 4 полипептидные цепи. Различают Н-цепи (сердце) и М-цепи(мышцы).

ЛДГ 1 – 4 цепи Н-типа, в сердце

ЛДГ 2 – 3 цепи Н-типа и 1 цепь М-типа, в сердце, почках

ЛДГ 3 – 2 цепи Н-типа и 2 цепи М-типа, в легких

ЛДГ 4 – 1 цепь Н-типа и 3 цепи М-типа, в печени

ЛДГ 5 – 4 цепи М-типа, в мышцах и печени.

Декарбоксилазы аминокислот

По химической природе декарбоксилазы аминокислот – это сложные ферменты, коферментами которых могут являться фосфопиридоксаль(вит В6 связанный с фосф.к-той)

И пирролохинолинохинон (PQQ). ДК аминокислот являются ферментами бактерий, например, в толстом отделе кишечника у животных и человека. Эти ферменты в толстом кишечнике вызывают гниение белков, декарбоксилируя аминокислоты. В клетках человека и животных ДК аминокислот мало. Декарбоксилирование аминокислот также происходит при разложении трупа, когда под действием катепсинов белки тканей распадаются до аминокислот, а ДК аминокислот проводят дальнейшие изменения их

Подкласс-гидролиазы

Представитель-карбангидраза- двухкомпонентный фермент, кофермент окончательно не изучен, но известно, что в его состав входит цинк. Фермент ускоряет обратимую реакцию синтеза и распада угольной кислоты Н2О + CO2 = H2CO3

Направление реакции зависит от концентрации СО2, поэтому фермент вызывает удаление избытка угольной кислоты и играет роль в регуляции дыхательного центра.

Декарбоксилазы аминокислот

декарбоксилазы аминокислот- чаще всего бактериального происхождения, играют важную роль при бактериальных инфекциях и в процессе гниения. Набольшое кол-во встречается и в животных тканях, гфе они принимают участие в обмене некоторых аминокислот, способствую образования биогенных аминов(вещества, образующиеся в организме животных или растений из аминокислот при их декарбоксилировании ферментами декарбоксилазами и обладающие высокой биологической активностью.) . По строению это двухкомп. Ферменты, коф-т – фосфопиридоксаль (витамин В6 с H3PO4).

Карбоангидраза.

Карбоангидраза или угольная ангидраза - представитель подкласса гидро-лиазы. Двухкомп. фермент, сост из апофермента и кофермента, в состав кофермента входят ионы цинка. Катализирует р-ю распада и синтеза угольной к-ты. Сод-ся в эритроцитах и играет роль в процессах переноса СО2 от тканей к легким.

Н2О + СО2 ↔ Н2СО3

Направление реакции зависит от конц-ии СО2. Имеет значение в удалении избытка угольной к-ты(СО2) и играет роль в регуляции дыхательного центра.

36 Оксирезуктазы. Классификация. Это большой класс ферментов, которые катализируют окислительно-восстановительные реакции (реакции отщепления или присоединения водорода или электронов). По химической природе двухкомпонентны, содержатся в клетках. Различают около 90 подклассов. Для удобства изложения и усвоения этого материала по способу окисления можно разделить на 4 группы:

1) дегидролазы (Представители: 1)пиридинферменты; 2) флавинферменты)

Цитохромы,

Каталаза и пероксидаза,

Гидрооксилазы и оксигеназы

Дегидрогеназы, предтавители

К дегидрогеназам относятся ферменты, осуществляющие окисление веществ путем их дегидрирования (отнятия водорода), участвуя в БО и восстановлении, т.е. в реакциях, связанных с процессами тканевого дыхания, гликолиза, брожения. Известно свыше 150 ДГ-аз. Представители: 1)пиридинферменты; 2) флавинферменты

Представители. 1.

Реакции ЦТК

Пункты сопряжения БО и ОФ

БО имеет 3 пункта,в которых выделяется энергия,достаточная для образования АТФ. Эти пункты называются пунктами сопряжения БО и ОФ,это 2(когда НАДН 2 окисляется ФФ),6(Цхв окисляется,ЦХс1 восстанавливается),9 и 10(в ЦХО,Цха окисляется,ЦХа3 восстанавливается)

Разобщение БО и ОФ

Главная суть в том, что они разрывают связь между БО и ОФ, то есть 3 и 4 стадией энерг. Обмена.

А. 2.4 динитрофенол (принимался против ожирения)

Б. Дикумарол – применяется как антикогулянт в клинич. Практике.

В. Транспорт Са в митохондрии. Не происходит сохранение АТФ и АТФ тратится на захват кальция.

Ферментные ансамбли.

Мембранносвязанные ферменты, участвующие в БО в митохондриях, расположены не линейно, а обьеденены в комплекса:

1. Комплекс ФП(ФМН)

Оксидазное окисление.

ПФ и ФП окисляют субстраты перенося водород, на убихиноне они распадаются на протоны и электроны. Далее электроны транспортируются различными цитохромами, передаваясь на кислород, ионизируя его. Ион кислорода, соедин. С протонами водорода, образует эндогенную воду. В процессе БО выделяется энергия, идущая на образование АТФ 40% и тепла 60%

½ О2 + 2Н+ = энергия + Н2О

61. Оксигеназное окисление, значение, ферменты, конечные продукты. Больше половины оставшегося кислорода используется на оксигеназный тип окисления, который идет по 2 путям – монооксигеназному и диоксигеназному. Монооксигеназный путь происходит в митохондриях и микросомах. В митохондриях происходит гидроксилирование (при участии НАДФН2, ЦхР450). При гидроксилировании образуется окисленный продукт, вода и НАДФ. При диоксигеназном пути оксигеназного типа под влиянием оксигеназ происходит включение обоих атомов кислорода в субстрат. Обычно это происходит с веществами, имеющими ненасыщенные связи по месту их разрыва, например, ненасыщенные ЖК.

62. Пероксидазное окисление . Пероксидазное окисление - побочный путь окисления, обычно наблюдается при выходе из строя цитохромной системы или когда субстрат не окисляется другим путем, например, мочевая кислота. Протекает с участием ферментов оксидаз, наиболее активных в пероксисомах.

Пероксисомы – микротельца, обнаруженные в гепотоцитах; окислительные органеллы. Эти микротельца содержат оксидазу мочевой кислоты, оксидазу Д-аминокислот, а также каталазу, которая расщепляет пероксид водорода.

Например: Ксантин + Н2О2 + О2 = (фермент ксантиноксидаза) получается молочная кислота + Н2О2 ; 2 % кислорода в организме идет на окисление восстановленных ФП(ФАД) с образованием перекиси водорода

ФПН2 + О2 = ФП + Н2О2(фермент Каталаза)

Н2О2 = Н2О + О2 (фермент каталаза)

63. Пероксидное окисление. Образование АФК . Пероксидный тип окисления или перекисный, или свободно-радикальный - происходит при одноэлектронном восстановлении О2. Этому типу окисления подвергаются ПНЖК в составе ФЛ мембран. ПОЛ инициируется под действием АФК.АФК делятся на 2 группы: 1 группа – свободные радикалы: супероксиданион радикал, гидроксипероксирадикал (НОО ), гидроксильный радикал, радикал оксида азота, алкилоксирадикал (LO ), липопероксирадикал (LOO ) 2 группа – нерадикальные вещества: гипохлорит-анион, перекись водорода, синглетный кислород (1О2), озон (О3), железокислородный комплекс (Fe++-О2) и ГПЛ (LOOH). АФК в больших количествах опасны для клеток. Так, супероксиданион может вызвать деполимеризацию ГАГ, окисление адреналина и тиолов. Перекись водорода токсична, хотя механизм токсичности не ясен. Известно, что избыток перекиси водорода вызывает окисление тиогрупп белков, может приводить к образованию гидроксильного радикала. Главная опасность АФК – инициация ПОЛ. Свободно-радикальное окисление (СРО) носит цепной характер:

ПНЖК - ДК - ГПЛ - МДА (малоновый диальдегид)

диеновые конъюгаты гидропероксиды

ПОЛ – главный путь использования ПНЖК. Продукты ПОЛ необходимы при синтезе некоторых гормонов и белков (например, в синтезе тироидных гормонов), образования простагландинов (ПРГ), для функционирования фагоцитов, для регуляции проницаемости и состава липидов мембран, скорости пролиферации клеток и их секреторной функции.

Однако следует учесть, что увеличение скорости ПОЛ и концентрации продуктов ПОЛ приводит к повреждению клетки и ее смерти, например, продукты ПОЛ, являясь высокотоксичными повреждают ДНК и РНК, вызывают мутации. Продукты ПОЛ вызывают денатурацию белков, разобщают БО и ОФ, нарушают структуру мембран.

64. Антиоксиданты ферментные и неферментные Скорость ПОЛ контролируется АОС. АОС подразделяется на ферментную и неферментную.

К первой относятся: 1)СОД (Супероксиддисмутаза), которая переводит супероксидный радикал в менее токсичную перекись водорода2О2 + 2Н+ = Н2О2 +О2 2)Каталаза, которая разрушает пероксид водорода до воды и молеклярного кислорода; 3) Глутатионпероксидаза (ГПО)окисляет гидрокперекись липидов до легкоокисляемых ЖК 4) Глутатионредуктаза(ГР), восстанавливающая окисленный глутатион. К неферментной АОС относятся жирорастворимые витамины, каротиноиды, витамин С, витамин Р, витамин В2, карнозин (нейтрализует гидроксильный радикал), ферритин (связывает двухвалентное железо, которое является источником электронов для образования АФК), церулоплазмин (связывает двухвалентную медь, что уменьшает возможность ее окисления и образования супероксиданион-радикала, а также окисляет двухвалентное железо, выполняя роль феррооксидазы), металлотионеины (связывают медь и другие металлы, выполняя не только антиоксидантную функцию, но и антитоксическую), таурин (нейтрализует гипохлорит-анион).

Пункты сопряжения БО и ОФ

К ним относятся пункты под № 2,6,9,10

2) 2 пункт - НАДН 2 окисляется ФП. Теряя водороды НАДН 2 окисляется, а флавопротеиды, присоединяя водороды восстанавливается

6) 6 пункт - Происходит ОВР между ферроЦхЬ(окисляется) и ферриЦхс 1 (восстанавливается).

9-10) очень тесно объединены м.у собой, т.к происходят в мультиферментном комплексе - цитохромоксидазе. 2 ферро Цха(Fe2+)передают 2e 2ферриЦха3 (Fe3+).

Цха(Fe2+)-окисляется, Цха3(Fe3+)- восстанавливается

Разобщение БО и ОФ

Некоторые липофильные вещества (2,4-динитрофенол, некоторые лекарства, жирные кислоты) могут переносить ионы водорода через внутреннюю мембрану митохондрий в матрикс, минуя канал АТФ-синтазы. В результате этого снижается протонный градиент и прекращается синтез АТФ. Это явление называется разобщением, а вещества - разобщителями дыхания и фосфорилирования.

Прототипы разобщителей ОФ

2,4 –динитрофенол – классический разобщитель ОФ. Токсичен, но одно время использовался как лекарство от ожирения.

Дикумарол – обладает аналогичным действие и используется как антикоагулянт

Транспорт Ca2+ в митохондрии также изменяет взаимоотношения между электронным транспортом и ОФ.

Ферментные ансамбли

Мембранносвязанные ферменты, участвующие в БО в митохондриях, расположены не линейно, а объединены в 4 комплекса: 1 комплекс ФП(ФМН), 2 комплекс ФП(ФАД), 3 комплекс Цхв и Цхс1, 4 – Цха и Цха3

Ферменты,понятие. Сходства в действии ферментов и неорганических катализаторов. Общие свойства ферментов.

Ферменты-это биологические катализаторы белковой природы,ускоряющие биохимические реакции в животных организмах.

Сходства: 1) фермент и неорганический катализатор снижают энергию активации;

2)фермент и неорг. кат. ускоряют только энергетически возможные реакции;

3)фер. и неорг.кат. не изменяют направление реакции, не нарушают равновесия обратимой реакции,а только ускоряют наступление равновесия;

4)фер. и неорг.кат. не расходуются в процессе реакции и не входят в состав конечных продуктов реакции.

Общие свойства: Общие свойства ферментов одновременно являются и отличием ферментов от неор.кат.:

· Ферменты имеют белковую природу, поэтому обладают свойствами, характерными для белков;

· Ферменты имеют сложное строение;

· Ферменты обладают высокой специфичностью, как субстратной,так и специфичностью действия;

· Ферменты имеют высокую биологическую активность, что обусловлено высоким сродством фермента к субстрату, и они гораздо сильнее снижают энергию активации. Ед.измерения активности фермента- катал;

· Ферменты действуют в мягких условиях(при T-37-45,давлении 1 атм.);

· Ферменты- это катализаторы с регулируемой активностью.

Неорганические катализаторы и ферменты (биокатализаторы), не расходуясь сами, ускоряют течение химических реакций и их энергетические возможности. В присутствии любых катализаторов энергия в химической системе сохраняет постоянство. В процессе катализа направление химической реакции остается неизменным.

Что такое ферменты и неорганические катализаторы

Ферменты являются биологическими катализаторами. Их основа – белок. Активная часть ферментов содержит неорганическое вещество, к примеру, атомы металлов. При этом каталитическая эффективность металлов, включенных в молекулу фермента, увеличивается в миллионы раз. Примечательно то, что органический и неорганический фрагменты фермента не способны по отдельности проявлять свойства катализатора, тогда как в тандеме являются мощными катализаторами.
Неорганические катализаторы ускоряют всевозможные химические реакции.

Сравнение ферментов и неорганических катализаторов

В чем разница между ферментами и неорганическими катализаторами? Неорганические катализаторы по своей природе – неорганические вещества, а ферменты – белки. В составе неорганических катализаторов нет белка.
Ферменты по сравнению с неорганическими катализаторами обладают специфичностью действия к субстрату и наиболее высокой эффективностью. Благодаря ферментам реакция протекает быстрее в миллионы раз.
Например, перекись водорода без присутствия катализаторов разлагается довольно медленно. При наличии неорганического катализатора (обычно солей железа) реакция несколько убыстряется. А при добавлении фермента каталазы пероксид разлагается с невообразимой скоростью.
Ферменты способны работать в ограниченном диапазоне температур (как правило, 370 С). Скорость действия неорганических катализаторов с каждым увеличением температуры на 10 градусов повышается в 2-4 раза. Ферменты подвергаются регуляции (существуют ингибиторы и активаторы ферментов). Неорганическим катализаторам свойственна нерегулируемая работа.
Для ферментов характерна конформационная лабильность (их структура подвергается незначительным изменениям, образующимся в процессе разрыва старых связей и образования новых связей, прочность которых слабее). Реакции с участием ферментов протекают лишь в физиологических условиях. Ферменты способны работать внутри организма, его тканей и клеток, где создаются необходимый температурный режим, давление и рН.

TheDifference.ru определил, что отличие ферментов и неорганических катализаторов заключается в следующем:

Ферменты – высокомолекулярные белковые тела, они довольно специфичны. Ферменты способны катализировать всего лишь один-единственный тип реакции. Они являются катализаторами биохимических реакций. Неорганические катализаторы ускоряют разные реакции.
Ферменты могут действовать в конкретном узком температурном интервале, определенном давлении и кислотности среды.
Ферментативные реакции обладают высокой скоростью.

Ферменты и их значение в процессах жизнедеятельности

Из курса химии вам известно, что такое катализатор. Это вещество, которое ускоряет реакцию, оставаясь в конце реакции неизменным (не расходуясь). Биологические катализаторы называются ферментами (от лат. fermentum – брожение, закваска), или энзимами .

Почти все ферменты – это белки (но не все белки – ферменты!). В последние годы стало известно, что и некоторые молекулы РНК имеют свойства ферментов.

Впервые высокоочищенный кристаллический фермент был выделен в 1926 г. американским биохимиком Дж.Самнером. Этим ферментом была уреаза , которая катализирует расщепление мочевины. К настоящему времени известно более 2 тыс. ферментов, и их количество продолжает расти. Многие из них выделены из живых клеток и получены в чистом виде.

В клетке постоянно идут тысячи реакций. Если смешать в пробирке органические и неорганические вещества точно в тех же соотношениях, что и в живой клетке, но без ферментов, то почти никаких реакций с заметной скоростью идти не будет. Именно благодаря ферментам реализуется генетическая информация и осуществляется весь обмен веществ.

Для названия большинства ферментов характерен суффикс -аза, который чаще всего прибавляется к названию субстрата – вещества, с которым взаимодействует фермент.

Строение ферментов

По сравнению с молекулярной массой субстрата ферменты имеют гораздо большую массу. Такое несоответствие наводит на мысль, что не вся молекула фермента участвует в катализе. Чтобы разобраться в этом вопросе, необходимо познакомиться со строением ферментов.

По строению ферменты могут быть простыми и сложными белками. Во втором случае в составе фермента кроме белковой части (апофермент ) имеется добавочная группа небелковой природы – активатор (кофактор , или кофермент ), вследствие чего образуется активный голофермент . Активаторами ферментов выступают:

1) неорганические ионы (например, для активации фермента амилазы, находящегося в слюне, необходимы ионы хлора (Сl–);

2) простетические группы (ФАД, биотин), прочно связанные с субстратом;

3) коферменты (НАД, НАДФ, кофермент А), непрочно связанные с субстратом.

Белковая часть и небелковый компонент в отдельности лишены ферментативной активности, но, соединившись вместе, приобретают характерные свойства фермента.

В белковой части ферментов содержатся уникальные по своей структуре активные центры, представляющие собой сочетание определенных аминокислотных остатков, строго ориентированных по отношению друг к другу (в настоящее время структура активных центров ряда ферментов расшифрована). Активный центр взаимодействует с молекулой субстрата с образованием «фермент-субстратного комплекса». Затем «фермент-субстратный комплекс» распадается на фермент и продукт или продукты реакции.

Согласно гипотезе, выдвинутой в 1890 г. Э.Фишером, субстрат подходит к ферменту, как ключ к замку , т.е. пространственные конфигурации активного центра фермента и субстрата точно соответствуют (комплементарны ) друг другу. Субстрат сравнивается с «ключом», который подходит к «замку» – ферменту. Так, активный центр лизоцима (фермента слюны) имеет вид щели и по форме точно соответствует фрагменту молекулы сложного углевода бактериальной палочки, которая расщепляется под действием этого фермента.

В 1959 г. Д. Кошланд выдвинул гипотезу, по которой пространственное соответствие структуры субстрата и активного центра фермента создается лишь в момент их взаимодействия друг с другом. Эту гипотезу назвали гипотезой «руки и перчатки» (гипотеза индуцированного взаимодействия). Этот процесс «динамического узнавания» – на сегодня наиболее распространенная гипотеза.

Отличия ферментов от небиологических катализаторов

Ферменты во многом отличаются от небиологических катализаторов.

1. Ферменты значительно эффективнее (в 10 4 –10 9 раз). Так, единственная молекула фермента каталазы может расщепить за одну секунду 10 тыс. молекул токсичной для клетки перекиси водорода:

2Н 2 О 2 ––> 2H 2 O + O 2 ­,

которая возникает при окислении в организме различных соединений. Или еще один пример, подтверждающий высокую эффективность действия ферментов: при комнатной температуре одна молекула уреазы способна за за одну секунду расщепить до 30 тыс. молекул мочевины:

H 2 N–CO–NH 2 + Н 2 О ––> СО 2 ­ + 2NН 3 ­.

Не будь катализатора, на это потребовалось бы около 3 млн лет.

2. Высокая специфичность действия ферментов. Большинство ферментов действуют лишь на один или очень небольшое число «своих» природных соединений (субстратов). Специфичность ферментов отражает формула «один фермент – один субстрат» . Благодаря этому в живых организмах множество реакций катализируется независимо.

3. Ферменты доступны тонкой и точной регуляции. Активность фермента может увеличиваться или уменьшаться при незначительном изменении условий, в которых он «работает».

4. Небиологические катализаторы в большинстве случаев хорошо работают лишь при высокой температуре. Ферменты же, присутствуя в клетках в малых количествах, работают при обычной температуре и давлении (хотя рамки действия ферментов ограничены, так как высокая температура вызывает денатурацию). Поскольку большинство ферментов являются белками, их активность наиболее высока при физиологически нормальных условиях: t=35–45 °C; слабощелочная среда (хотя для каждого фермента существует свое оптимальное значение рН).

5. Ферменты образуют комплексы – так называемые биологические конвейеры. Процесс расщепления или синтеза любого вещества в клетке, как правило, разделен на ряд химических операций. Каждую операцию выполняет отдельный фермент. Группа таких ферментов составляет своего рода биохимический конвейер.

6. Ферменты способны регулироваться, т.е. «включаться» и «выключаться» (правда, это относится не ко всем ферментам, например, не регулируется амилаза слюны и ряд других пищеварительных ферментов). В большинстве молекул апоферментов есть участки, которые узнают еще и конечный продукт, «сходящий» с полиферментного конвейера. Если такого продукта слишком много, то активность самого начального фермента тормозится им, и наоборот, если продукта мало, то фермент активизируется. Так регулируется множество биохимических процессов.

Таким образом, ферменты обладают целым рядом преимуществ по сравнению с небиологическими катализаторами.

| следующая лекция ==>
Аналіз останніх досліджень і публікацій. Проблеми фінансування регіонів Європейського Союзу і України розглядали такі науковці як: Возняк Г.В., Григор’єва О.Н., Бєліченко А.Ф. |

Ферменты - это специализированные белки, образуются в клетках и способны ускорять биохимические процессы, т.е. это биологические катализаторы.

Многие ферменты для проявления каталитической активности нуждаются в присутствии некоторых веществ небелковой природы - кофакторов. Различают 2 группы кофакторов - ионы металлов (а также некоторые неорганические соединения) и коферменты, которые представляют собой органические вещества. В числе коферментов есть такие, которые содержат металлы (железо в геме, кобальт в кобаламиде).

Сходства ферментов и неорганических катализаторов:

  • 1. катализируют только энергетически возможные реакции;
  • 2. не изменяют равновесия в обратимых реакциях;
  • 3. не изменяют направление реакции;
  • 4. не расходуются в результате реакции.

Отличия между ферментами и неорганическими катализаторами (общие свойства ферментов):

  • 1. сложность строения;
  • 2. высокая мощность действия. За единицу фермента принимают такое его количество, которое катализирует превращение 1мкМ вещества за 1 минуту;
  • 3. специфичность;
  • 4. это вещества с регулируемой активностью;

действуют в мягких условиях организма.

Давно выяснено, что все ферменты являются белками и обладают всеми свойствами белков. Поэтому подобно белкам ферменты делятся на простые и сложные.

Простые ферменты состоят только из аминокислот - например, пепсин, трипсин, лизоцим.

Сложные ферменты (холоферменты) имеют в своем составе белковую часть, состоящую из аминокислот - апофермент, и небелковую часть - кофактор. Кофактор, в свою очередь, может называться коферментом или простетической группой. Примером могут быть сукцинатдегидрогеназа (содержит ФАД) (в цикле трикарбоновых кислот), аминотрансферазы (содержат пиридоксальфосфат) (функция), пероксидаза (содержит гем). Для осуществления катализа необходим полноценный комплекс апобелка и кофактора, по отдельности катализ они осуществить не могут.

По типу катализируемых реакций ферменты подразделяются на 6 классов согласно иерархической классификации ферментов (КФ, EC -- Enzyme Comission code). Классификация была предложена Международным союзом биохимии и молекулярной биологии (International Union of Biochemistry and Molecular Biology). Каждый класс содержит подклассы, так что фермент описывается совокупностью четырёх чисел, разделённых точками. Например, пепсин имеет название ЕС 3.4.23.1. Первое число грубо описывает механизм реакции, катализируемой ферментом:

  • 1. Оксидоредуктазы, катализирующие окисление или восстановление. Пример: каталаза, алкогольдегидрогеназа
  • 2. Трансферазы, катализирующие перенос химических групп с одной молекулы субстрата на другую. Среди трансфераз особо выделяют киназы, переносящие фосфатную группу, как правило, с молекулы АТФ.
  • 3. Гидролазы, катализирующие гидролиз химических связей. Пример: эстеразы, пепсин, трипсин, амилаза, липопротеинлипаза
  • 4. Лиазы, катализирующие разрыв химических связей без гидролиза с образованием двойной связи в одном из продуктов.
  • 5. Изомеразы, катализирующие структурные или геометрические изменения в молекуле субстрата.
  • 6. Лигазы, катализирующие образование химических связей между субстратами за счет гидролиза АТФ. Пример: ДНК-полимераза

Ферменты –это белковые молекулы, которые катализируют химические реакции в живых системах. Относительная молекулярная масса ферментов от 10 в 5 степени до 10 в 7 степени

Все биохимические реакции являются каталитическими. Катализаторы биохимических реакций имеют белковую природу и называются ферментами.

Ферменты отличаются от обычных катализаторов:

1)Они обладают более высокой каталитической эффективностью. Эффективность работы ферментов выражается молярной активностью – числом молекул субстрата, превращающихся в продукты реакции за единицу времени при условии полного насыщения фермента субстратом.

2)Ферменты высокоспецифичны, т.е. избирательность действия. Различают субстратную и групповую специфичность. Субстратная специфичность включает в себя и стереоспецифичность – проявление каталитической активности только в отношении одного из стереоизомеров данного вещества.

Ферменты с групповой специфичностью обеспечивают превращения разных субстратов, но имеющих определенные структурные фрагменты.

3)Ферменты проявляют максимальную эффективность только в мягких условиях температура (36*-38*), характеризующихся небольшим интервалом температур и значений рН

Ферменты катализируют превращение аминокислот; пищеварительные ферменты расщепляют пептидные связи самих белков; все биохимические реакции осуществимы в присутствии ферментов

Каждый фермент катализирует только определенную химическую реакцию.

Другой случай представляет собой ферменты с широкой специфичностью в отношении субстрата.

Вследствие высокой специфичности ферментов в обратимых процессах при определенных условиях они обычно увеличивают скорость только реакции, идущей в нужном направлении. В этом заключается одно из отличий ферментативного катализа от простого.

В организме для регуляции ферментативных процессов используются активаторы и ингибиторы .

Ингибиторы тормозят действие ферментов. Бывает обратимое и необратимое ингибирование фермента.

Обратимое наблюдается при взаимодействии с катионами металлов-токсикантов:Hg , Pb,Cd или с ингибиторами белковой природы.

При необратимом торможении ингибитор, обладающий структурным сходством с субстратом, блокирует активный центр фермента, надолго выводя его из строя. (отравляющие вещества)

12. Зависимость скорости ферментативной реакции от: а) температуры; б) рН среды; в) концентрации фермента. Ответ поясните с использованием графиков.

При увеличении температуры свыше определенного значения (45*-50*) биохимические реакции резко замедляются, а затем останавливаются, что связано с инактивацией ферментов при высоких температурах. Снижение активности фермента при температуре выше оптимальной связано с тепловой денатурацией белка, которая наступает при 50*-60*,а в некоторых случаях и при 40*



Снижение активности фермента при значенияхрН , отличающихся от оптимального значения, объясняется изменением степени его ионизации изменением характера ион-ионных и других взаимодействий, обеспечивающих стабильность третичной структуры белка. Для большинства ферментов Оптимальное значение рН совпадает с физиологическими значениями (7,3-7,4). Существуют ферменты, для нормального функционирования которых нужна сильно кислая (пепсин 1,5-2,5) или сильно щелочная (аргиназа 9,5-9,9) среда.

При высокой концентрации субстрата, обеспечивающей полное насыщение всех активных центров фермента, скорость реакции перестает зависеть от концентрации субстрата, однако скорость реакции остается зависеть от концентрации фермента

ГРАФИКИ НА СТРАНИЦЕ 227 В КРАСНОМ УЧЕБНИКЕ

Особенности кинетики ферментативной реакции. Графическая зависимость влияния концентрации субстрата на скорость ферментативной реакции (при постоянной концентрации фермента). Уравнение Михаэлиса-Ментен и его анализ.

Для каждой ферментативной реакции промежуточной реакцией является присоединение к активному центру фермента (Е) молекулы субстрата (St) с возникновением фермент-субстратного комплекса () , который в дальнейшем распадается на продукты реакции (Р) и молекулу фермента:

Где k1 , k-1 , k2 - константы скоростей отдельных стадий

Образование фермент-субстратного комплекса приводит к перераспределению электронов в молекуле субстрата. Скорость реакции зависит от концентрации субстрата. При низких концентрациях субстрата реакция имеет по субстрату первый порядок (Nst = 1) , а при высоких – нулевой (Nst = 0) . При этом скорость реакции становится максимальной. Максимальная скорость ферментативной реакции зависит от концентрации фермента в системе.

ГРАФИК СТРАНИЦА 227 КРАСНЫЙ УЧЕБНИК

Впервые кинетическое описание ферментативных процессов сделали Михаэлис и Ментен, которые предположили уравнение:

Км – константа Михаэлиса, учитывающая величины констант скоростей отдельных реакций (К1 , К-1 , К2), численно равна концентрации субстрата, при которой скорость ферментативной реакции равна половине максимальной (U мах /2)

Величина Км для данной ферментативной реакции зависит от типа субстрата, рН реакционной среды, температуры и концентрации фермента в системе. Реакция протекает тем быстрее, чем меньше Км. На скорость ферментативной реакции влияет присутствие активаторов и ингибиторов. Скорость зависит от концентрации субстрата и фермента.