Выводы по критерию стьюдента. Классические методы статистики: t-критерий Стьюдента

Таблица распределения Стьюдента

Таблицы интеграла вероятностей используются для выборок большого объема из бесконечно большой генеральной совокупности. Но уже при (n ) < 100 получается Несоответствие между

табличными данными и вероятностью предела; при (n ) < 30 погрешность становится значительной. Несоответствие вызывается главным образом характером распределения единиц генеральной совокупности. При большом объеме выборки особенность распределения в гене-

ральной совокупности не имеет значения, так как распределение отклонений выборочного показателя от генеральной характеристики при большой выборке всегда оказывается нормаль-

ным. В выборках небольшого объема (n ) < 30 характер распределения генеральной совокупности сказывается на распределении ошибок выборки. Поэтому для расчета ошибки выборки при небольшом объеме наблюдения (уже менее 100 единиц) отбор должен проводиться из со-

вокупности, имеющей нормальное распределение. Теория малых выборок разработана английским статистиком В. Госсетом (писавшим под псевдонимом Стьюдент) в начале XX в. В

1908 г. им построено специальное распределение, которое позволяет и при малых выборках соотносить (t ) и доверительную вероятность F(t ). При (n ) > 100, таблицы распределения Стьюдента дают те же результаты, что и таблицы интеграла вероятностей Лапласа, при 30 < (n ) <

100 различия незначительны. Поэтому практически к малым выборкам относят выборки объемом менее 30 единиц (безусловно, большой считается выборка с объемом более 100 единиц).

Использование малых выборок в ряде случаев обусловлено характером обследуемой совокупности. Так, в селекционной работе «чистого» опыта легче добиться на небольшом числе

делянок. Производственный и экономический эксперимент, связанный с экономическими затратами, также проводится на небольшом числе испытаний. Как уже отмечалось, в случае малой выборки только для нормально распределенной генеральной совокупности могут быть рассчитаны и доверительные вероятности, и доверительные пределы генеральной средней.

Плотность вероятностей распределения Стьюдента описывается функцией.

1 + t2

f (t ,n) := Bn

n − 1

t - текущая переменная;n - объем выборки;

B - величина, зависящая лишь от (n ).

Распределение Стьюдента имеет только один параметр: (d.f. ) -число степеней свободы (иногда обозначается (к )). Это распределение - как и нормальное, симметрично относительно точки (t ) = 0, но оно более пологое. При увеличении объема выборки, а, следовательно, и числа степеней свободы распределение Стьюдента быстро приближается к нормальному. Число степеней свободы равно числу тех индивидуальных значений признаков, которыми нужно рас-

полагать для определения искомой характеристики. Так, для расчета дисперсии должна быть известна средняя величина. Поэтому при расчете дисперсии применяют (d.f. )= n - 1 .

Таблицы распределения Стьюдента публикуются в двух вариантах:

1. аналогично таблицам интеграла вероятностей приводятся значения (t ) и соответствую-

щие вероятности F(t ) при разном числе степеней свободы;

2. значения (t ) приводятся для наиболее употребляемых доверительных вероятностей

0,70; 0,75; 0,80; 0,85; 0,90; 0,95 и 0,99 или для 1 - 0,70 = 0,3; 1 - 0,80 = 0,2; …… 1 - 0,99 = 0,01.

3. при разном числе степеней свободы. Такого рода таблица приведена в приложении

(Таблица 1 - 20 ), а также значение (t )- критерий Стьюдента при уровне значимости от0,7

Одним из наиболее известных статистических инструментов является критерий Стьюдента. Он используется для измерения статистической значимости различных парных величин. Microsoft Excel обладает специальной функцией для расчета данного показателя. Давайте узнаем, как рассчитать критерий Стьюдента в Экселе.

Но, для начала давайте все-таки выясним, что представляет собой критерий Стьюдента в общем. Данный показатель применяется для проверки равенства средних значений двух выборок. То есть, он определяет достоверность различий между двумя группами данных. При этом, для определения этого критерия используется целый набор методов. Показатель можно рассчитывать с учетом одностороннего или двухстороннего распределения.

Расчет показателя в Excel

Теперь перейдем непосредственно к вопросу, как рассчитать данный показатель в Экселе. Его можно произвести через функцию СТЬЮДЕНТ.ТЕСТ . В версиях Excel 2007 года и ранее она называлась ТТЕСТ . Впрочем, она была оставлена и в позднейших версиях в целях совместимости, но в них все-таки рекомендуется использовать более современную — СТЬЮДЕНТ.ТЕСТ . Данную функцию можно использовать тремя способами, о которых подробно пойдет речь ниже.

Способ 1: Мастер функций

Проще всего производить вычисления данного показателя через Мастер функций.


Выполняется расчет, а результат выводится на экран в заранее выделенную ячейку.

Способ 2: работа со вкладкой «Формулы»

Функцию СТЬЮДЕНТ.ТЕСТ можно вызвать также путем перехода во вкладку «Формулы» с помощью специальной кнопки на ленте.


Способ 3: ручной ввод

Формулу СТЬЮДЕНТ.ТЕСТ также можно ввести вручную в любую ячейку на листе или в строку функций. Её синтаксический вид выглядит следующим образом:

СТЬЮДЕНТ.ТЕСТ(Массив1;Массив2;Хвосты;Тип)

Что означает каждый из аргументов, было рассмотрено при разборе первого способа. Эти значения и следует подставлять в данную функцию.

После того, как данные введены, жмем кнопку Enter для вывода результата на экран.

Как видим, вычисляется критерий Стьюдента в Excel очень просто и быстро. Главное, пользователь, который проводит вычисления, должен понимать, что он собой представляет и какие вводимые данные за что отвечают. Непосредственный расчет программа выполняет сама.

Метод позволяет проверить гипотезу о том, что средние значения двух ге-неральных совокупностей, из которых извлечены сравниваемые зависимые вы-борки, отличаются друг от друга. Допущение зависимости чаще всего значит, что признак измерен на одной и той же выборке дважды, например, до воз-действия и после него. В общем же случае каждому представителю одной вы-борки поставлен в соответствие представитель из другой выборки (они по-парно объединены) так, что два ряда данных положительно коррелируют друг с другом. Более слабые виды зависимости выборок: выборка 1 — мужья, вы-борка 2 — их жены; выборка 1 — годовалые дети, выборка 2 составлена из близнецов детей выборки 1, и т. д.

Проверяемая статистическая гипотеза, как и в предыдущем случае, Н 0: М 1 = М 2 (средние значения в выборках 1 и 2 равны). При ее отклонении принимается альтернативная гипотеза о том, что М 1 больше (меньше) М 2 .

Исходные предположения для статистической проверки:

Каждому представителю одной выборки (из одной генеральной совокупно-сти) поставлен в соответствие представитель другой выборки (из другой генеральной совокупности);

Данные двух выборок положительно коррелируют (образуют пары);

Распределение изучаемого признака и в той и другой выборке соответству-ет нормальному закону.

Структура исходных данных: имеется по два значения изучаемого признака для каждого объекта (для каждой пары).

Ограничения: распределения признака и в той, и в другой выборке должно суще-ственно не отличаться от нормального; данные двух измерений, соответству-ющих той и другой выборке, положительно коррелируют.

Альтернативы: критерий Т-Вилкоксона , если распределение хотя бы для одной выборки существенно отличается от нормального; критерий t-Стьюдента для независимых выборок — если данные для двух выборок не корре-лируют положительно.

Формула для эмпирического значения критерия t-Стьюдента отражает тот факт, что единицей анализа различий является разность (сдвиг) значений при-знака для каждой пары наблюдений. Соответственно, для каждой из N пар значений признака сначала вычисляется разность d i = х 1 i - x 2 i .

где M d - средняя разность значений; σ d - стандартное отклонение разностей.

Пример расчета:

Предположим, в ходе проверки эффективности тренинга каждому из 8 членов груп-пы задавался вопрос «Насколько часто твое мнение совпадаете мнением группы?» — дважды, до и после тренинга. Для ответов использовалась 10-балльная шкала: 1 — никогда, 5 — в половине случаев, 10 — всегда. Проверялась гипотеза о том, что в результате тренинга самооценка конформизма (стремления быть как другие в группе) участников возрастет (α = 0,05). Составим таблицу для промежуточных вычислений (таблица 3).


Таблица 3

Среднее арифметической для разности M d = (-6)/8 = -0,75. Вычтем это значение из каждого d (предпоследний столбец таблицы).

Формула для стандартного отклонения отличается лишь тем, что вместо Х в ней фигурирует d. Подставляем все нужные значения, получаем:

σ d = = 0,886.

Ш а г 1. Вычисляем эмпирическое значение критерия по формуле (3): средняя раз-ность M d = -0,75; стандартное отклонение σ d = 0,886; t э = 2,39; df = 7.

Шаг 2. Определяем по таблице критических значений критерия t-Стьюдента р-уровень значимости. Для df = 7 эмпирическое значение находится меж-ду критическими для р = 0,05 и р — 0,01. Следовательно, р < 0,05.

df Р
0,05 0,01 0,001
2,365 3,499 5,408

Шаг 3. Принимаем статистическое решение и формулируем вывод. Статистичес-кая гипотеза о равенстве средних значений отклоняется. Вывод: показатель само-оценки конформизма участников после тренинга увеличился статистически досто-верно (на уровне значимости р < 0,05).

К параметрическим методам относится и сравнение дисперсий двух выборок по критерию F-Фишера . Иногда этот метод приводит к ценным содержатель-ным выводам, а в случае сравнения средних для независимых выборок срав-нение дисперсий является обязательной процедурой.

Для вычисления F эмп нужно найти отношение дисперсий двух выборок, причем так, чтобы большая по величине дисперсия находилась бы в числителе, а меньшая знаменателе.

Сравнение дисперсий . Метод позволяет проверить гипотезу о том, что дисперсии двух генераль-ных совокупностей, из которых извлечены сравниваемые выборки, отлича-ются друг от друга. Проверяемая статистическая гипотеза Н 0: σ 1 2 = σ 2 2 (дисперсия в выборке 1 равна дисперсии в выборке 2). При ее отклонении принимается альтернативная гипотеза о том, что одна дисперсия больше другой.

Исходные предположения : две выборки извлекаются случайно из разных ге-неральных совокупностей с нормальным распределением изучаемого признака.

Структура исходных данных: изучаемый признак измерен у объектов (ис-пытуемых), каждый из которых принадлежит к одной из двух сравниваемых выборок.

Ограничения: распределения признака и в той, и в другой выборке суще-ственно не отличаются от нормального.

Альтернатива методу: критерий Ливена (Levene"sTest), применение которого не требует проверки предположения о нормальности (используется в программе SPSS).

Формула для эмпирического значения критерия F-Фишера:

(4)

где σ 1 2 большая дисперсия, a σ 2 2 — меньшая дисперсия. Так как заранее не известно, какая дисперсия больше, то для определения р-уровня применяется Таблица критических значений для ненаправленных альтернатив. Если F э > F Kp для соответствующего числа степеней свободы, то р < 0,05 и статистическую гипотезу о равенстве дисперсий можно отклонить (для α = 0,05).

Пример расчета:

Детям давались обычные арифметические задания, после чего одной случайно выбранной половине учащихся сообщали, что они не выдержали испытания, а ос-тальным — обратное. Затем у каждого ребенка спрашивали, сколько секунд ему потребовалось бы для решения аналогичной задачи. Экспериментатор вычислял разность между называемым ребенком временем и результатом выполненного за-дания (в сек.). Ожидалось, что сообщение о неудаче вызовет некоторую неадекват-ность самооценки ребенка. Проверяемая гипотеза (на уровне α = 0,005) состояла в том, что дисперсия совокупности самооценок не зависит от сообщений об удаче или неудаче (Н 0: σ 1 2 = σ 2 2).

Были получены следующие данные:

Ш а г 1. Вычислим эмпирическое значение критерия и числа степеней свободы по формулам (4):

Шаг 2. По таблице критических значений критерия f-Фишера для ненаправлен-ных альтернатив находим критическое значение для df числ = 11; df знам = 11. Однако критическое значение есть только для df числ = 10 и df знам = 12. Боль-шее число степеней свободы брать нельзя, поэтому берем критическое значение для df числ = 10: Для р = 0,05 F Kp = 3,526; для р = 0,01 F Kp = 5,418.

Шаг 3. Принятие статистического решения и содержательный вывод. Поскольку эмпирическое значение превышает критическое значение для р = 0,01 (и тем бо-лее — для р = 0,05), то в данном случае р < 0,01 и принимается альтернативная гипо-теза: дисперсия в группе 1 превышает дисперсию в группе 2 (р < 0,01). Следователь-но, после сообщения о неудаче неадекватность самооценки выше, чем после сооб-щения об удаче.

Чаще всего в психологическом исследовании наблюдается задачи на выявление различий между двумя или более группами признаков. Выяснение таких различий на уровне средних арифметических рассмотрено в процедуре анализа первичных статистик. Однако возникает вопрос, насколько эти различия достоверны и можно ли их распространить (экстраполировать) на всю популяцию. Для решения этой задачи чаще всего используют (при условии нормального или близкого к нормальному распределению) t - критерий (критерий Стьюдента), который предназначен для выяснения, насколько достоверно отличаются показатели одной выборки испытуемых от другой (например, когда исследуемые получают в результате тестирования одной группы высшие баллы, чем представители другой). Это параметрический критерий, имеет две основные формы:

1) несвязанный (нечетная) t - критерий, предназначенный для того, чтобы выяснить, есть ли различия между оценками, полученными при использовании одного и того же теста для тестирования двух групп, сформированных из разных людей. Например, это может быть сравнение уровня интеллекта или нервно-психической устойчивости, тревожности успевающих и неуспевающих учеников или сравнение по этим признакам учеников разных классов, возрастов, социальных уровней и тому подобное. Могут быть и разнополые, разнонациональные выборки, а также подвыборки в исследуемых выборках, выделены по определенному признаку. Критерий называют "несвязанный", потому что сравниваемые группы сформированы из разных людей;

2) связан (парный) t - критерий, применяемый для сравнения показателей двух групп, между элементами которых существует специфическая связь. Это означает, что каждому элементу первой группы соответствует элемент второй группы, похожий на него по определенным параметром интересующей исследователя. Чаще всего сравнивают параметры одних и тех же лиц до и после определенного события или действия (например, в процессе проведения лонгитюдного исследования или формирующего эксперимента). Поэтому этот критерий используют для сравнения показателей одних и тех же лиц до и после обследования, эксперимента или истечении определенного времени.

Если данные не подлежат нормальному закону распределения, используют непараметрические критерии, эквивалентные t - критерия: критерий Манна - Уитни, эквивалентный нечетном t - критерия, и Двухвыборочный критерий Вилкоксона, эквивалентный парном t - критерия.

С помощью t - критериев и их непараметрических эквивалентов можно только сравнивать результаты двух групп, полученные с использованием одного и того же теста. Однако в некоторых случаях возникает необходимость сравнения нескольких групп или оценок нескольких видов. Это можно сделать поэтапно, разбив задачу на несколько пар сравнений (например, если надо сравнить группы А, Б и Y по результатам тестов X и Y, то можно с помощью t - критерия сначала сравнить группы А и Б по результатам теста X, затем А и Б по результатам теста В, А и В по результатам теста Х и т. д.). Однако это очень трудоемкий метод, поэтому прибегают к более сложному методу дисперсионного анализа.

Метод оценки достоверности различий средних арифметических по достаточно эффективным параметрическим критерием Стьюдента предназначен для решения одной из задач, чаще всего наблюдаются при обработке данных - выявление достоверности различий между двумя или более рядами значений. Такая оценка часто необходимо при сравнительном анализе полярных групп. их выделяют на основе различной выраженности определенной целевой признаки (характеристики) изучаемого явления. Как правило, анализ начинают с подсчета первичных статистик выделенных групп ", затем оценивают достоверность различий. Критерий Стьюдента вычисляют по формуле:

Значение критерия Стьюдента для трех уровней доверительной (статистической) значимости (р) приводят в справочниках по матстатистику. Количество степеней свободы определяют по формуле:

С уменьшением объемов выборок (n <10) критерий Стьюдента становится чувствительным к форме распределения исследуемого признака в генеральной совокупности. Поэтому в сомнительных случаях рекомендуют использовать непараметрические методы или сравнивать полученные значения с критическими (табл. 2.17) для высшего уровня значимости.

Решение о достоверности различий принимают в том случае, если исчисленная величина t превышает табличное значение для определенного количества степеней свободы (d (v)). В публикациях или научных отчетах указывают высокий уровень значимости из трех: р <0,05; р <0,01; р <0,001.

При любом числового значения критерия достоверности различия между средними этот показатель оценивает не степень выявленной различия (ее оценивают по самой разницей между средними), а только его статистическую достоверность, то есть право распространять полученный на основе сопоставления выборок вывод о наличии разницы на все явление (весь процесс) в целом. Низкий исчисленный критерий отличия не может служить доказательством отсутствия различия между двумя признаками (явлениями), потому что его значимость (степень достоверности) зависит не только от величины средних, но и от количества сравниваемых выборок. Он указывает не на отсутствие различия, а на то, что при такой величины выборок она статистически недостоверная: очень большой шанс, что разница в этих условиях случайная, очень мала вероятность ее достоверности.

Таблица 2.17. Доверительные границы для критерия Стьюдента (t-критерий) для f степеней свободы

ния среднего времени выполнения задания во второй попытке (по сравнению с первой пробой) не является достоверным.

Это выражение не равносильно утверждению о статистической однородности двух выборок, которые сопоставляют. Кроме того, применение критерия Стьюдента в случае таких неодинаковых выборок не вполне корректное математически и, безусловно, сказывается на конечном итоге о недостоверности различий Хср = 9,1 и Хср = 8,5. Пользуясь этим критерием, оценивают не степень близости двух средних, а рассматривают отнесения или невод несения случайной (при заданном уровне значимости). .