Водородный генератор для сварки своими руками. Водородная горелка: устройство, принцип работы, как сделать своими руками

Водородная сварка представляет собой разновидность газопламенной обработки. Ее отличительной особенностью является горение пламени в атмосфере водорода. На сегодняшний день среди всех видов газопламенных обработок наибольшей популярностью пользуется именно такой метод.

Он обладает высокой эффективностью и служит отличной альтернативой ацетиленовой сварке. Кроме того, изготовить сварочный аппарат можно своими руками в домашних условиях, что делает его еще более интересным.

Водородная сварка обладает рядом преимуществ по сравнению с другими аналогами. Главным ее достоинством является то, что в процессе горения сварочной горелки выделяется водяной пар, поэтому она является самой безопасной.

Кроме того, данная технология обеспечивает высокие рабочие температуры, а значит позволяет работать с более тугоплавкими металлами. Водородную сварку можно легко использовать в домашних условиях, так как изготовить сварочный аппарат своими руками может любой желающий.

Еще одним наиболее часто используемым методом является ацетиленовая сварка.

Технология сварки при помощи водорода.

В то же время водородная во многих случаях оказывается более предпочтительной благодаря своим особенностям:

  • позволяет получать аккуратные плотные швы;
  • возможность работы с мелкими деталями;
  • высокая температура газовой горелки позволяет осуществлять не только , но и резку материалов;
  • водородная горелка своими руками – это посильная задача не только для мастеров, но и для новичков;
  • возможность выполнения работ в замкнутом пространстве;
  • водородный сварочный аппарат является малогабаритным и его удобно транспортировать.

Несмотря на многочисленные достоинства атомно-водородной сварки, она не лишена недостатков. Главные из них – это трудности работы с медными изделиями, некоторыми легированными сталями, а также с массивными материалами.

Применение метода

Газопламенная сварка осуществляется за счет горения газообразной смеси. Самой часто используемой является ацетиленовая сварка. Она основана на окислении карбида в воде.

Если необходима небольшая температура, например, для работы с мелкими деталями или тонким металлом, используется пропан. Он подается из баллона в смесительную камеру, а затем в горелку.

В эту же камеру подается кислород, поддерживающий горение газа. Регулируя давление кислорода можно достичь температуры горения до 3000 градусов, что позволяет осуществлять не только сварку, но и резку металла.

Недостатком этой является необходимость использование баллона с газом. Это накладывает ограничения на применение сварки во многих сложных условиях.

Агрегат для водородной сварки.

Принцип работы водородной сварки основан на процессе разделения воды на водород и кислород. В результате последующей рекомбинации одноатомного водорода в двухатомный происходит высвобождение энергии, ускоряющей сварку.

Область сварки оказывается защищенной водородом от кислорода, что исключает окисление поверхности и обеспечивает гладкие швы.

Использовать водородные баллоны для сплава опасно. Его утечка в замкнутых помещениях может привести к удушью или головокружению. Также он является взрывоопасным.

Производство водорода, необходимого для работы сварочного аппарата, осуществляется непосредственно на месте проведения сварочных работ в электролизной камере. Это исключает указанные риски при правильном использовании оборудования и соблюдении техники безопасности.

Водородная сварка широко применяется в сложных условиях: тоннелях, шахтах, коллекторах. Использовать в таких задачах пропилен-ацетиленовые баллоны невозможно из-за высокого риска утечки смеси и ее взрыва.

Электролизное оборудование лишено этих недостатков и широко применяется в указанных областях.

Использовать водородные сварочные аппараты достаточно просто. Они не требуют частой перезарядки и быстро выходят на рабочие температуры.

Кроме того, они могут работать от бытовой сети, что делает их весьма привлекательными для простого пользователя. Особенно учитывая то, что водородная сварка может быть изготовлена своими руками по одной из многочисленных схем электролизера для сварки доступной в интернете.

Как самому сделать водородный сварочный аппарат?

Сварка водородом пригодится любому умельцу. Водородный резак является недешевым оборудованием. Кроме того, доступные в продаже аппараты зачастую оказываются непригодными для мелких деталей, особенно для ювелирных изделий.

Выходом из этой ситуации является изготовление атомно-водородной сварки своими руками. Все детали, необходимые для создания такого прибора можно легко приобрести в любом хозяйственном магазине. Итак, давайте рассмотрим, как это сделать в домашних условиях.

Основная емкость

Установка для сварки при помощи водорода.

Аппарат водородной сварки работает в результате горения водорода, благодаря диссоциации водного раствора щелочи.

Этот процесс осуществляется в емкости, для которой отлично подойдет пол литровая банка. Ее необходимо закрыть пластмассовой крышкой с двумя отверстиями, проделанными для вывода контактов от электродов.

Все выводы необходимо плотно загерметизировать. Для этих целей подойдет клей «Момент».

В качестве можно использовать четырехсантиметровые полоски из нержавеющей стали. Для наибольшей производительности сварочного аппарата требуется задействовать весь объем жидкости.

Для этого пластины просверливаются по верхнему и нижнему краю и соединяются между собой диэлектрическими шпильками. На получившемся блоке делаются клеммы: два минуса, расположенные по краям, и полюс между ними.

Каждая клемма загибается и фиксируется на емкости болтом. На эти болты будут накидываться клеммы от источника питания.

Емкость необходимо заполнить с помощью шприца рабочей жидкостью через штуцер отвода газов. Электролит представляет собой 8-10% смесь гидроокиси натрия в дистиллированной воде. При работе электролизера температура рабочей жидкости щелочного раствора обычно не превышает 80 °С.

Гидродозатором выступает второй сосуд. В нем газы насыщаются парами горючих веществ. Затем полученная смесь направляется в третью емкость, наполненную обычной водой. Она выполняет функцию затвора для выхода газов.

В качестве сопла, через которое буду выходить кислород, водород и горючие вещества, может быть использована обычная медицинская игла.

Источник тока для атомно-водородной сварки

В качестве источника тока может использоваться обычный аккумулятор на 12 вольт. Этот вариант отлично подойдет для работы с металлом фиксированной толщины.

Его недостатком является отсутствие возможности контроля силы пламени , так как ее производительность определяется выработкой водорода и кислорода, зависящей от силы тока.

Выбор зарядного устройства для автомобильных аккумуляторов будет более предпочтительным. Для работы с тонкими металлическими пластинами или ювелирными изделиями зарядку можно настроить на 3 вольта.

Запитать кислородом водородную сварку можно от обычной сети в 220 В, что позволяет использовать данный аппарат в домашних условиях.

Обменная камера

Принципиальная схема аппарата водородной сварки.

Для отбора водорода и кислорода, подаваемого в горелку, используется еще одна емкость – обменная камера.

Внутри нее необходимо проделать 3 отверстия:

  • для заправки рабочей жидкостью;
  • снизу штуцер для подачи рабочей жидкости в основную емкость;
  • штуцер для подачи газовой смеси на сопло.

Конструкцию дополнительной емкости также необходимо тщательно загерметизировать. Через водородные затворы водородного генератора не должны просачиваться газы и жидкость. Это также решается с помощью «Момента».

Изготовление горелки

Для изготовления горелки можно использовать обычный резиновый шланг. Именно по нему водород и кислород будут транспортироваться от обменной камеры к соплу. В качестве сопла можно применить иглу от шприца или капельницы. Последняя будет более предпочтительным выбором, так как стенки этой иглы толще.

Шланг необходимо плотно закрепить со штуцером обменной камеры и основанием иглы. Это достигается при помощи хомутов. После завершения всех операций по сборке аппарата можно приступать к его испытанию.

Электролиз рабочей жидкости начинается быстро. Уже через несколько минут можно будет поджечь пламя на конце сопла. Регулировка пламени осуществляется изменением напряжения на аппарате.

Итог

Во многих случаях использование водородной сварки оказывается более удобным, чем других газопламенных методов. Особенно актуальной она становится, когда речь заходит про работу в домашних условиях.

Приведенное описание того, как сделать водородную горелку своими руками, поможет всем мастерам, желающим изготовить такой прибор. Это существенно сэкономит средства на покупку магазинного варианта сварки.

Кроме того изготовленный своими руками водородный резак является более перспективным для работы с мелкими изделиями. Водородная сварка является экологически чистой, а ее изготовление не требует большого труда и крупных затрат.

Также метод аналогичен с ацетиленовой сваркой, и освоить его не составит труда.

Одним из самых удобных и практичных способов получения водорода, и его дальнейшего, разумного применения является водородный генератор, так называемая водородная горелка. Но получение водорода в домашних условиях довольно опасное занятие потому прислушайтесь к описанному совету.

Самодельный водородный генератор:

Основу водородной горелки составляет водородный генератор, который представляет собою своеобразную ёмкость с водой и пластинами из нержавеющей стали. Конструкция и подробное описание водородного генератора можно без особых усилий найти на других сайтах, потому я не стану тратить печатные символы на это. Я хочу передать весьма важные тонкости, которые будут вам очень полезны, если вы соберётесь делать водородную горелку своими руками.


Рисунок №1 – Структурная схема водородной горелки

Суть водородной горелки заключается в получении водорода путём электролиза воды. Вы должны понимать, что в электролизёр (емкость с водой и электродами) и потому, нельзя наливать туда что попало, я рекомендую использовать дистиллированную воду, однако читал, что для более эффективного электролиза добавляют ещё каустическую соду (пропорций не знаю).

Мой электролизёр собран из нержавеющих пластин, резиновых прокладок, и двух толстых пластин оргстекла, и внешне всё это выглядит так:


Рисунок №2 – Электролизёр

Электролизёр необходимо заполнять водою ровно наполовину для соблюдения техники безопасности, следите за уровнем жидкости, так как с его снижением меняются электрические параметры и интенсивность выделения водорода!

Но прежде чем потратить кучу времени и материалов на сборку электролизёра, позаботитесь о блоке питания к нему. Мой электролизёр, к примеру, потребляет ток около 6А, при напряжении 8В.

Металлические пластины (электроды) соединены при помощи припаянной к ним толстой медной проволоки, и толстых медных проводов (около 4мм сечение).


Рисунок №3 – Как подсоединить провода

Так же вы должны понимать, что всё должно быть герметично соединено и хорошо заизолировано, короткое замыкание пластин и искра недопустимо!!!


Рисунок №4 – Изоляция пластин

На самом деле есть масса разного рода конструкций электролизёра потому я не хочу на нем фокусировать ваше внимание, хотя он и является самой основной и трудоёмкой деталью для водородной горелки, само по себе он не очень важен (вам подойдёт любая его конструкция).

При работе с водородной горелкой следует:

Если вы собрались делать водородную горелку, то будьте осторожны! Водород очень взрывоопасен!!! При сборке и работе с водородной горелкой, есть много жизненно важных тонкостей. Обратите внимание на мои советы – я это реально проделывал и знаю что говорю.

В самодельной водородной горелке обязательно должно быть согласованно давление водорода, и защита от обратного взрыва, хорошая герметичность и изоляция!

Дело в том, что при работе водородной горелкой, для электролиза вы используете блок питания. И пока он включён, водород выделяется примерно с одинаковой интенсивностью (по мере работы она может падать, так как вода испаряется и меняется плотность тока между пластинами электродов), потому не приступайте к работе, не ознакомившись предварительно с устройством горелки.

Как правильно пользоваться водородной горелкой:

Во-первых прежде всего, всегда работайте в средствах индивидуальной защиты (обязательно наденьте на лицо защитный щиток или очки), во-вторых соблюдайте правила пожарной безопасности. В-третьих, следите за уровнем воды в электролизёре, и интенсивностью горения пламени.

Поджигать пламя нужно не сразу, дайте водороду вытеснить остатки кислорода (у меня это занимает около десяти минут, в зависимости от интенсивности выделения и объёма сосудов с водяным затвором и предохранителем А, Б рис.1)

Обязательно держите около себя ёмкость с водою – она вам понадобится, что бы потушить пламя горелки, когда закончите работу. Для этого, вам просто необходимо направить кончик иглы с пламенем под воду и тем самым перекрыть огню кислород. ВСЕГДА СНАЧАЛА ТУШИТЕ ПЛАМЯ А ПОТОМ ВЫКЛЮЧАЙТЕ ПИТАНИЕ ГЕНЕРАТОРА – ИНАЧЕ ВЗРЫВ НЕМЕНУЕМ.

Водяной затвор и предохранитель:

Обратите ваше внимание на рисунок №1 – там есть две ёмкости (Я обозначил их А и Б), ну и иголка от одноразового шприца (В), всё это соединено трубками от капельниц.

В первую емкость (А) необходимо наливать воду, это водяной затвор. Он необходим для того что бы взрыв не добрался до электролизёра (если он рванёт то это будет как осколочная граната).


Рисунок №5 – Водяной затвор

Обратите внимание, в крышке водяного затвора есть два соединителя (я всё это приспособил от медицинской капельницы), оба они герметично вклеены в крышку при помощи эпоксидного клея. Одна трубка длинная, по ней водород с генератора должен поступать под воду, булькать, и через второе отверстие идти по трубке к предохранителю (Б).


Рисунок №6 – Предохранитель

В ёмкость с предохранителем вы можете наливать как воду (для большей надёжности) так и спирт (пары спирта повышают температуру горения пламени).

Сам предохранитель делается так: Вам необходимо проделать в крышке отверстие диаметром 15 мм, и отверстия для винтиков.


Рисунок №7 – Как выглядят отверстия в крышке

Также вам понадобится две толстых шайбы (если потребуется, то надо расширить внутренний диаметр шайбы при помощи круглого напильника) две водопроводных прокладки и фольгу от шоколадки или обыкновенный воздушный шарик.


Рисунок №8 – Эскиз защитного клапана

Собирается он достаточно просто, вам необходимо просверлить четыре соосных отверстия в железных шайбах крышке и прокладках. Сначала необходимо припаять болты к верхней шайбе, это легко можно сделать при помощи мощного паяльника и активного флюса.


Рисунок №9 – Шайба с винтиками
Рисунок №10 – Припаянные к шайбе винтики

После того как вы припаяли винтики вам необходимо надеть на шайбу одну резиновую прокладку и непосредственно ваш клапан. Я использовал тонкую резинку от лопнувшего воздушного шарика (это гораздо удобнее чем надевать тонкую фольгу), хотя фольга, тоже подходит довольно удачно, по крайней мере, когда я испытывал свою водородную горелку на предмет взрывоопасности, то в клапане была именно фольга.


Рисунок №11 – Надеваем прокладку и защитную резинку

Потом надеваем вторую прокладку и можно вставлять защиту в отверстия, проделанные в крышке.


Рисунок № 12 – Готовый клапан
Рисунок №13 – Элементы защиты

Вторая шайба и гайки нужны, что бы герметично и крепко зафиксировать защиту, закручивая гайки (посмотрите на рисунок №6).

Поймите правильно и примите к сведенью, нельзя пренебрегать правилами техники безопасности, особенно когда работаете со взрывоопасными газами. А такое нехитрое приспособление может спасти вас от неприятных неожиданностей. Работает защита по принципу «где тонко – там и рвётся», взрывом выбивает защитную плёнку (фольгу или резинку), и взрывная сила не идёт в электролизёр, к тому же этому препятствует ещё и водяной затвор. Поверьте на слово, если взорвётся электролизер, то мало вам не покажется:)!!!


Рисунок №14 – Взрыв

Следует понимать что аварийная ситуация обязательно неминуема. Дело в том, что пламя горит на выходе форсунки, (в качестве которой достаточно неплохо подходит иголка от одноразового шприца) только потому, что создается давление газа (давление согласовано).


Рисунок № 15 – Форсунка из шприца, на пьедестале

К примеру, вы работаете вашей горелкой и вот вырубило свет, поверьте! Вы не успеете отскочить от горелки, пламя моментально пойдёт обратно по трубке и прогремит взрыв защитного клапана (он и нужен что бы рванул он а не электролизёр) – это вполне нормально, когда горелка самодельная – будьте бдительны и осторожны, держитесь подальше от водородной горелки и надевайте средства индивидуальной защиты!

Лично я не в большом восторге от водородной горелки, я и попробовал её сделать только по тому, что у меня уже был готовый электролизёр. Во-первых, это очень опасно, во-вторых не очень эффективно (я говорю о своей водородной горелке а не о горелках в целом) расплавить ею то что я хотел не удалось. И потому если вам пришла в голову идея сделать такого типа горелку задайте себе вполне рациональный вопрос «а оно того стоит», так как собрать электролизёр с нуля это достаточно хлопотное дело, а ещё нужен мощный блок питания такой что бы хватало для согласования давления водорода и диаметра выходной форсунки. Потому, «лишь бы было» я вам её делать не рекомендую, а только если она вам действительно нужна.

Многие привыкли считать, что самым доступным и экономичным видом топлива является природный газ. Но оказалось, что у этого продукта существует хороший альтернативный вариант - водород. Его получают посредством расщепления воды. Исходный компонент для получения такого топлива получается бесплатно. Водородная горелка для котла отопления, сделанная своими руками, поможет значительно сэкономить и не думать о походе в магазин. Существуют специальные правила и методы создания технической установки, предназначенной для выработки водорода.

Как получается водород?

Информацию о получении водорода часто дают учителя химии детям, обучающимся в средней школе. Метод его добычи из простой воды в химии называется электролизом. Именно с помощью такой химической реакции есть возможность получать водород.

Простое по конструкции устройство выглядит как отдельная емкость, наполненная жидкостью. Под слоем воды находятся два пластичных электрода. К ним подводят электрический ток. Из-за того, что вода обладает свойством электропроводимости, между пластинками выстраивается контакт с минимальным сопротивлением.

Проходящий по созданному водяному сопротивлению ток приводит к формированию химической реакции, в результате которой вырабатывается требуемый водород.

На этом этапе все кажется очень простым - остается лишь собрать полученный водород, чтобы использовать его как источник энергии. Но химия не может существовать без мелких деталей. Важно помнить, что если водород вступает в соединение с кислородом, то при определенной концентрации возникает взрывоопасная смесь. Такое состояние веществ считается критичным, что ограничивает человека в создании мощнейших станций домашнего типа.

Как устроена водородная горелка?

Для создания своими руками генераторов, работающих на водороде, чаще всего в качестве основы используется классическая схема установки Брауна. Электролизер такого типа обладает средней мощностью и включает в себя несколько групп ячеек, каждая из которых, в свою очередь, обладает группой пластичных электродов. Мощность созданной установки будет зависеть от общей площади поверхности пластичных электродов.

Ячейки устанавливаются в емкость, которая качественно защищена от внешних факторов. На корпусе устройства фиксируются специальные патрубки для подключения водяной магистрали, вывода водорода, а также контактная панель, осуществляющую роль подводки электрического тока.

Созданная своими руками водородная горелка по схеме Брауна, помимо всего перечисленного, включает в себя отдельный водяной затвор и обратный клапан. С помощью таких деталей достигается полная защита устройства от выхода водорода. Именно эту схему используют многие мастера при создании водородной установки для отопления домашнего участка.

Отопление дома водородом

Создать кислородно-водородную горелку своими руками не так просто, это требует определенных усилий и терпения. Чтобы собрать нужное количество водорода для отопления дома, нужно воспользоваться мощной электролизной установкой, а также запастись огромным количеством электрической энергии.

Специалисты отмечают, что компенсировать затраченное электричество посредством использования готовой установки в домашних условиях получится нескоро.

Водородная станция для использования в домашних условиях

Как сделать водородную горелку своими руками? Этот вопрос продолжает оставаться самым популярным у владельцев частных домов, которые стараются изготовить надежный и качественный источник отопления. Самым распространенным способом создания такого устройства считается следующий вариант:

  • предварительно подготавливают герметичную емкость;
  • создаются пластинные либо трубчатые электроды;
  • планируется конструкция прибора: способ управления им и оснащение током;
  • подготавливаются дополнительные модули для подключения к устройству;
  • покупаются специальные детали (крепежи, шланги, проводка).

Конечно же, мастеру в обязательном порядке потребуются инструменты, включая специальные устройства, частотомер либо осциллограф. Как только все инструменты и материалы будут подготовлены, мастер может перейти к самому созданию водородно-отопительной горелки для домашнего использования.

Схема создания устройства

На первом этапе создания водородной горелки для отопления дома мастеру нужно проделать специальные ячейки, предназначенные для генерации водорода. Топливная ячейка отличается своей укомплектованностью (немного меньше длины и ширины корпуса генератора), поэтому не займет слишком много места. Высота блока с электродами внутри доходит до 2/3 высота главного корпуса, в который устанавливаются основные детали конструкции.

Ячейку можно создать из оргстекла либо текстолита (толщина стенки варьируется от 5 до 7 миллиметров). Для этого текстолитовая пластина разрезается на пять равных частей. Далее из них формируют прямоугольник и склеивают границы эпоксидным клеем. Нижняя часть полученной фигуры должна оставаться открытой.

Из таких пластин принято создавать корпус топливной ячейки водородного отопителя. Но в этом случае специалисты применяют немного другой способ сборки с использованием винтов.

На внешней стороне готового прямоугольника высверливают небольшие отверстия, предназначенные для проведения электродных пластин, а также одно маленькое отверстие для датчика уровня. Для комфортного высвобождения водорода потребуется дополнительное отверстие шириной от 10 до 15 миллиметров.

Внутрь вставляются платины электродов, контактные хвостики которых проводят через высверленные отверстия на верхней части прямоугольника. Далее встраивается датчик уровня воды на отметке 80 процентов заполнения ячейки. Все свободные отверстия в текстолитовой пластине (исключая то, из которого будет выходить водород) заливаются эпоксидным клеем.

Ячейки генератора

Чаще всего при создании водородного генератора используют цилиндрическую форму исполнения модулей. Электроды в такой конструкции выполнены немного по другой схеме.

Отверстие, из которого выходит водород, должно быть дополнительно оборудовано специальным штуцером. Его фиксируют креплением либо вклеивают. Готовая ячейка генерации водорода встраивается в корпус отопительного прибора и заделывается со стороны верха (в этом случае можно также использовать эпоксидную смолу).

Корпус прибора

Корпус водородного генератора для использования в домашних условиях выполняется довольно просто. Но использовать такую конструкцию для станций высокой мощности не получится, так как он просто не выдержит оказываемой нагрузки.

Перед тем как установить внутрь готовую ячейку, корпус следует хорошо подготовить. Для этого нужно:

  • создать подвод жидкости в нижней части корпуса;
  • сделать верхнюю крышку, оснащенную удобным и надежным крепежом;
  • выбрать хороший уплотнительный материал;
  • установить на крышку электрический клеммник;
  • оснастить крышку водородным коллектором.

Финальный этап

В конце работы мастер сможет получить качественный и надежный водородный генератор для отопительной системы частного дома. Далее останутся лишь финальные штрихи:

  • установить готовую топливную ячейку в главный корпус устройства;
  • подключить электроды к клеммнику крышки прибора;
  • штурец, установленный на отверстии выхода водорода, следует подсоединить к водородному коллектору;
  • крышка накладывается сверху на корпус устройства и фиксируется через уплотнитель.

Теперь водородный генератор полностью готов к работе. Владелец частного дома может смело подключать воду и дополнительные модули для комфортного обогрева частного дома.

Правила использования устройства

Водородная ювелирная горелка для дома должна обладать дополнительными встроенными модулями. Особо важен модуль подачи воды, который совмещается с датчиком уровня воды, встроенным в сам генератор водорода. Самые простые модели представляют собой водяной насос и контроллер управления. Насос управляется контроллером через сигнал датчика в зависимости от количества жидкости, находящейся в топливной ячейки.

Вспомогательные элементы очень важны для любой конструкции отопления. Без автоматических модулей контроля и защиты генератор на водородной основе использовать запрещено и даже опасно.

Специалисты советуют приобрести специальную систему, регулирующую частоту подаваемого электрического тока и уровня напряжения. Это важно для нормального функционирования рабочих электродов внутри топливной ячейки. Также в модуле должен находиться стабилизатор напряжения и защита от перегрузки током.

Водородный коллектор представляет собой трубку, в которую встроен специальный вентиль, манометр и обратный клапан. От коллектора водород подается в помещение посредством специального обратного клапана.

Манометр и водородный коллектор - очень важные детали в водородном генераторе, с помощью которых осуществляется равномерное распределение газа по помещению и контролируется общий уровень давления.

Любой потребитель должен помнить, что водород остается взрывоопасным газом с высокой температурой сгорания. Именно по этой причине просто взять и наполнить конструкцию отопительного прибора водородом запрещается.

Как определить качество установки?

Самостоятельно создать качественную и безопасную отопительную установку для дома - трудная задача, с которой справляются не все. Например, даже при рассмотрении металла, из которого состоят трубы прибора и электродные пластины, уже можно столкнуться с большим количеством трудностей.

Время службы встроенных электродов напрямую зависит от типа металла и его основных свойств. Конечно же, можно применять ту же нержавейку, но эксплуатация таких деталей будет недолгой. Температура водородной горелки должна быть в районе 5000 К.

Особое значение играют и замеры. Все расчеты следует проводить как можно точнее, учитывая требуемую мощность, качество поступающей воды и другие критерии. Если величина отверстия между электродами не будет совпадать с расчетами, то водородный генератор может и вовсе не запуститься.

В условиях ужесточения экологических требований к промышленным процессам проводятся работы по поиску безвредных видов топлива. Не остались без внимания и сварочные работы с использованием в качестве основных источников энергии горючих газов – пропана, ацетилена и других. В результате исследований оказалось возможным заменить их водородом, или, вернее смесью из водорода и кислорода.

Водород можно получить при помощи электролиза воды, точнее, щелочного раствора гидроксида натрия (каустической соды, едкого натра, это все названия одного и того же вещества). Гидроксид добавляют в воду для ускорения реакции.

Для получения водорода достаточно опустить в раствор два электрода и подать на них постоянный ток. В ходе электролизного процесса на положительном электроде будет выделяться кислород, на отрицательном – водород. Объем выделяемого водорода будет в два раза больше, чем объем выделяемого кислорода.

В химическом выражении реакция выглядит следующим образом:

2H 2 O=2H 2 +O 2

Остается технически разделить эти два газа и воспрепятствовать их смешиванию, поскольку в результате образуется смесь, обладающая огромной потенциальной энергией. Оставлять процесс без контроля крайне опасно.

Для сварки водород получают при помощи специальных аппаратов – электролизеров. Для их питания необходимо электричество напряжением от 230 В. Электролизеры, в зависимости от конструкции, могут работать на трехфазном токе и на однофазном.

Преимущества и недостатки

В результате сгорания водорода не образуется никаких вредных веществ, в отличие от случаев, когда для сварки используется ацетилен. Происходит это потому, что при сгорании водорода в среде кислорода, образуется вода, точнее водяной пар, который не содержит никаких вредных примесей.

Температура пламени водородно-кислородной смеси может регулироваться в пределах 600-2600 °C, что позволяет сваривать и резать даже самые тугоплавкие материалы.

Для получения водорода в качестве сырья используется только вода и электроэнергия, что делает стоимость работ низкой по сравнению с другими видами сварки.

Все вышеперечисленные свойства позволяют использовать водородную сварку в замкнутых пространствах, помещениях с плохой вентиляцией, в колодцах, тоннелях, подвалах домов.

Стоит отметить и такое преимущество водородной сварки, как возможность смены сопла горелки. Водород поддерживает пламя практически любой конфигурации и размера.

Использовать тонкую струю газа, дающую пламя не толще швейной иглы, можно даже при работе с ювелирными изделиями из драгоценных металлов. Для тонкого пламени не требуется наличие дополнительного кислорода, достаточно растворенного в воздухе.

Генератор водорода бытового назначения

Атомно-водородный способ

Одной из разновидностей сварки, в которой задействован водород, является атомно-водородная сварка. Процесс ее основан на явлении диссоциации (распада) молекулярного водорода на атомы.

Для распада, молекула водорода должна получить значительное количество тепловой энергии. Атомное состояние водорода настолько неустойчиво, что длится лишь доли секунды. А далее происходит восстановление водорода из атомного в молекулярный.

При восстановлении выделяется большое количество теплоты, которую и используют при атомно-водородной сварке для разогрева и плавления свариваемых деталей из металла.

На практике весь процесс реализуется при помощи электросварки с двумя неплавящимися электродами. Для получения необходимого тока, возбуждающего дугу, может использоваться обычный сварочный аппарат. А вот держатель или горелка имеют необычную конструкцию.

Электроды и горелка

Электроды с горелкой, в которую подается водород, расположены под углом друг к другу. Дуга возбуждается между этими двумя электродами. Водород, или азотно-водородная смесь, подаваемые в зону дуги, под воздействием высокой температуры переходят в состояние атомарного водорода.

Поскольку диссоциации происходит с поглощением тепла (водород оказывает охлаждающее влияние), то напряжение для разжигания дуги должно быть достаточно высоким – около 250-300 В. в дальнейшем напряжение можно понизить до 60-120 В, и дуга при этом может отлично гореть.

Интенсивность горения будет зависеть от расстояния между электродами и количества водорода, подаваемого в зону сварки.

Горение дуги

Разжигание дуги производится кратковременным замыканием электродов между собой или на графитовой пластинке при обдувании электродов газом. После разжигания дуги, расстояние до свариваемых деталей поддерживается в пределах 5-10 мм.

Если дуга не касается свариваемого металла, она горит равномерно и устойчиво. Ее называют спокойной. При малых расстояниях, до детали, когда пламя дуги почти касается детали, образуется сильный резкий звук. Такая дуга называется звенящей.

Технология сварки сходна с технологией обычной газовой.

Сварка с применением атомно-водородного метода была придумана и исследована в 1925 году американским ученым Лангмюром. В процессе исследований вместо дуги использовалась теплота от горения вольфрамовой нити, через которую пропускался водород.

В бытовых условиях

Для использования водородной сварки в быту необязательно покупать аппараты для получения водорода. Они, как правило, обладают большой производительностью и мощностью. К тому же, такие генераторы громоздкие и дорогие.

В бытовых условиях часто требуются небольшие объемы сварочных работ, поэтому оборудование для водородной сварки целесообразно изготовить самостоятельно.

Питание и рабочая жидкость

Питание можно подавать от автомобильного зарядного устройства или от самодельного выпрямителя, который можно изготовить, имея подходящий трансформатор и несколько полупроводниковых диодов.

В качестве рабочей жидкости должен использоваться раствор гидроокиси натрия. Он будет являться лучшим электролитом, чем простая вода. По мере уменьшения уровня раствора, необходимо просто добавлять воду. Количество гидроксида натрия будет всегда постоянно.

Корпус и трубки

В качестве корпуса для генератора водорода можно использовать обычную литровую банку с полиэтиленовой крышкой. В крышке необходимо просверлить отверстия под диаметр стеклянных трубок.

Трубки будут использоваться для отвода образующихся газов. Длина трубок должна быть достаточной для того, чтобы нижние концы были погружены в раствор.

Внутри трубок должны быть размещены электроды, по которым подается постоянный ток. Места прохода трубок через крышку необходимо загерметизировать любым силиконовым герметиком.

Отвод водорода

Из трубки, в которой находится отрицательный электрод, будет выделяться водород. Необходимо предусмотреть возможность отвода его при помощи шланга. Отводить водород необходимо через гидрозатвор.

Он представляет собой еще одну полулитровую банку с водой, в крышку которой вмонтированы две трубки. Одну из них, по которой подается водород от генератора, погружают в воду. Вторая выводит прошедший через воду водород из затвора и через шланги или эластичные трубки подает к горелке.

Водяной затвор необходим для того, чтобы пламя от горелки не прошло в генератор при падении давления водорода.

Горелка

Горелку можно сделать из иглы от медицинского шприца. Толщина ее должна быть 0,6-0,8 мм. Для держателя иглы можно приспособить подходящие пластиковые трубки, части корпусов шариковых ручек, автоматических карандашей. Необходимо предусмотреть и подвод к горелке кислорода от генератора.

Интенсивность образования водорода и кислорода в генераторе будет зависеть от величины подаваемого напряжения. Поэкспериментировав с этими параметрами, можно достичь температуры пламени горелки 2000-2500 °C.

Изготовленный своими руками аппарат, выполняющий водородную сварку, возможно с успехом применять для резки или для соединения сваркой либо пайкой различных мелких деталей из черного и цветного металла. Это может понадобиться при ремонте различных предметов домашнего обихода, деталей автомобилей, различных металлических инструментов.

Сегодня среди всех видов газопламенных обработок все большую популярность получает сварка водородная. Такая газосварочная технология основана прежде всего на процессе электрохимического распада воды на два химических элемента: водород и кислород.

Процедура сварки отличается наибольшей эффективностью и обладает большими преимуществами перед сваркой, где главным элементом выступает соединение кислорода с ацетиленом.

Водородную сварку можно отнести к категории безвредных технологий, так как весь процесс горения основан на единственном элементе – водяном паре. В ходе работы температура горелки может повыситься до 2600°С, а это значит, что данная технология позволит осуществить любую сварку, спаивание или поможет прорезать различные виды черных металлов.

Читайте также:

Технология процесса водородной сварки

Так как водородное пламя имеет ряд преимуществ перед ацетиленовым, его чаще используют для прорезания и спайки изделий из металла. Из-за того что в результате горения выделяется водяной пар, такая сварка считается самой безопасной. При использовании в ходе сварки водорода как топливного элемента, на покрытии металла может возникнуть слой шлака большой толщины. Выполняемый при этом сварочный шов будет иметь тонкую толщину и рыхлость. Чтобы избежать этого, в основном используют органические соединения, которые, наоборот, связывают кислород. Для этого лучше применять различные углеводороды (бензин, толуол и др.) и подогревать их до достижения температуры 80% от температуры кипения. При сварке понадобится минимальное количество углеводородов для максимального результата, поэтому она и намного дешевле, чем другая газопламенная обработка.

При использовании водородной сварки не нужно применять газовые баллоны, являющиеся эффективными источниками смеси водорода с кислородом. Дело в том, что они очень опасны при эксплуатации. Когда происходит сварка, водородное пламя совсем не видно при дневном свете. Поэтому для облегчения работы необходимо использовать специальные датчики. Надежность источников газа зависит прежде всего от аппаратов, работа которых возможна при наполненности водой, где с помощью воздействия электроэнергии она распадается на кислород и водород. При помощи таких электролизеров очень просто выполняется электролизная сварка, где в качестве основного элемента соединения деталей используется водородно-кислородная смесь.

В некоторых случаях используется атомно-водородная сварка, представляющая собой электрохимический процесс плавления. Действие достигается в результате нагревания электрической дуги расщепления водорода. По уровню содержания тепла атомно-водородная сварка несколько отличается от ацетиленово-кислородной сварки и других видов сварок. В основном данный вид используется при сварке чугуна или стали. В промышленных предприятиях атомно-водородная сварка применяется в редких случаях по причине высокого напряжения, которое опасно для любого человека.

Вернуться к оглавлению

Виды сварочных аппаратов

Для осуществления любого вида сварочных работ необходимо применять аппарат для сварки, отсутствие которого на любом строительном объекте или в бытовых условиях недопустимо. Ведь он является единственным аппаратом с возможностью скрепления изделий из металла.

При водородной сварке использованию подлежит водородно-сварочное оборудование. Водородный аппарат используется не только для резки и спайки разных видов металлов, но и для отделки различного пластика, стекла или кварца.

Этот вид оборудования подлежит использованию в отраслевых областях, где для работы нужен нагрев до максимальных температур.

Сварочный аппарат работает за счет водорода, который вырабатывается в самом аппарате. Вследствие распада молекул воды на два важных элемента, кислород и водород, удается получить водород. После этого образуется газовая смесь, имеющая максимальную энергию. При помощи нее можно осуществлять работы по соединению различных металлических конструкций.

Для того чтобы это устройство работало правильно, нужно подготовить 1,5 л дистиллированной воды и освободить доступ к сети электропитания.

Это оборудование очень легко эксплуатируется, не требует частого перезаряжания и имеет небольшую трудоемкость. Работа начинается уже через несколько минут после включения в сеть электропитания. При помощи аппаратов водородной сварки можно осуществлять сварку деталей толщиной до трех миллиметров, а это значит, что он может использоваться ювелирами, стоматологами, специалистами по ремонту бытовой техники.

Водородно-кислородные электролизеры отличаются мощностью, в зависимости от которой допускается выполнение различных сварочных работ.

К ним относится спайка, сварочные работы, кислородная резка и другие. При сварке водородом можно выполнить огромный перечень работ, начиная с микросварки и заканчивая резкой стальных листов. Эти аппараты малогабаритные и могут применяться для сварки листов размером до 2 мм при мощности 1,8 кВт.

В некоторых случаях применяются ацетиленовые генераторы и баллоны. Их целесообразно применять только в полевых условиях, где нет возможности использовать электричество. Если имеется разъем электропитания, то лучше использовать громоздкое сварочное оборудование.

Атомно-водородная сварка немного отличается своим технологическим процессом от обычного вида таких работ. В процессе происходит подача водорода в сварочную область. При помощи сварочной горелки можно с легкостью определить направление и объем смеси.

В ходе выполнения сварки с элементами кислорода и водорода, происходит оплавление краев горелки из-за слишком высокого уровня температуры. Поэтому она подлежит немедленному очищению. Такой процесс газосварки можно выполнить как в ручном, так и в автоматическом режиме.

Специалисты, имеющие навыки в этой области, способны делать эти необходимые работы без чьей-либо помощи.

Нужно просто купить аппарат для сварки с эффектом 210, где в упаковке имеется еще одна горелка. Этот аппарат начинает работу после включения его в сеть электропитания 220 Вт. Им можно легко достичь результата при резке металлических пластин небольшой толщины либо пластин из легированных сталей.