Контрольная работа Озон, свойства, токсикология и применение. Роль озонового щита планеты

ОЗОН O3 (от греч. ozon-пахнущий) - аллотропная модификация кислорода, которая может существовать во всех трех агрегатных состояниях. Озон - нестабильное соединение, и даже при комнатной температуре медленно разлагается на молекулярный кислород, однако озон не является радикалом.

Физические свойства

Молекулярный вес = 47, 9982 г/моль. Газообразный озон имеет плотность 2,144 10-3 г/см3 при давлении 1 атм и 29° С.

Озон – вещество особое. Он крайне нестабилен и при повышении концентрации легко диспропорционирует по общей схеме: 2О3 -> 3О2.В газообразном виде озон имеет голубоватый оттенок, заметный при содержании в воздухе 15-20% озона.

Озон при нормальных условиях - газ с резким запахом. При очень низких концентрациях, запах озона ощущается как приятная свежесть, но с увеличением концентрации становится неприятным. Запах замерзшего белья - запах озона. К нему легко привыкнуть.

Основное его количество сосредоточено в так называемом "озонном поясе" на высоте 15-30 км. У поверхности земли концентрация озона значительно меньше и абсолютно безопасна для живых существ; существует даже мнение, что полное его отсутствие также отрицательно сказывается на работоспособности человека.

При концентрациях порядка 10 ПДК озон ощущается очень хорошо, но через несколько минут ощущение пропадает практически полностью. Это необходимо иметь в виду при работе с ним.

Однако озон обеспечивает и сохранение жизни на Земле, т.к. озоновый слой задерживает наиболее губительную для живых организмов и растений часть уф-излучения Солнца с длиной волны менее 300 нм, наряду с СО2 поглощает ик-излучение Земли, препятствуя ее охлаждению.

Озон сильнее кислорода растворим в воде. В воде озон разлагается значительно быстрее, чем в газовой фазе, причем исключительно большое влияние на скорость разложения оказывает наличие примесей, особенно ионов металлов.

Рис1. Разложение озона в различных видах воды при температуре 20°С (1 - бидистиллят; 2 - дистиллят; 3 - вода "из под крана"; 4 - фильтрованная озерная вода)

Озон хорошо адсорбируется силикагелем и алюмогелем. При парциальном давлении озона, например 20 мм рт. ст., и при 0° С силикагель поглощает около 0,19% озона по весу. При низких температурах адсорбция заметно ослабевает. В адсорбированном состоянии озон очень устойчив. Потенциал ионизации озона равен 12,8 эВ.

Химические свойства озона

Они отличаются двумя главными чертами - нестойкостью и окисляющей способностью. Примешанный к воздуху в малых концентрациях, он разлагается сравнительно медленно, но при повышении температуры разложение его ускоряется и при температуре более 100° С становится очень быстрым.

Присутствие в воздухе NO2, Cl, а также каталитическое действие окислов металлов - серебра, меди, железа, марганца - ускоряют разложение озона. Озон обладает столь сильными окислительными свойствами, поскольку один из атомов кислорода очень легко отщепляется от его молекулы. Легко переходит в кислород.

Озон окисляет при обычной температуре большинство металлов. Кислые водные растворы озона довольно устойчивы, в щелочных растворах озон быстро разрушается. Металлы переменной валентности (Mn, Co, Fe и др.), многие окислы, перекиси и гидроокиси эффективно разрушают озон. Большинство металлических поверхностей покрывается пленкой окисла в высшем валентном состоянии металла (например, PbO2, AgO или Ag2O3, HgO).

Озон окисляет все металлы, за исключением золота и металлов платиновой группы, реагирует с большинством других элементов, разлагает галогеноводороды (кроме HF), переводит низшие окислы в высшие и т. д.

Он не окисляет золото, платину, иридий, сплав 75%Fe + 25%Cr. Черный сернистый свинец PbS он обращает в белый сернокислый PbSO4, мышьяковистый ангидрид Аs2O3 - в мышьяковый As2O5 и т. д.

Реакция озона с ионами металлов переменной валентности (Мn, Сr и Со) в последние годы находит практическое применение для синтеза полупродуктов для красителей, витамина РР (изоникотиновая кислота) и др. Смеси солей марганца и хрома в кислом растворе, содержащем окисляемое соединение (например, метилпиридины), окисляются озоном. При этом ионы Сr3+ переходят в Сr6+ и окисляют метилпиридины только по метальным группам. В отсутствие солей металлов разрушается преимущественно ароматическое ядро.

Озон реагирует и со многими газами, которые присутствуют в атмосфере. Сероводород H2S при соединении с озоном выделяет свободную серу, сернистый ангидрид SO2 превращается в серный SO3; закись азота N2O - в окись NO, оксид азота NO быстро окисляется до NO2, в свою очередь NO2 также реагирует с озоном, причем в конечном счете образуется N2O5; аммиак NH3 - в азотноаммиачную соль NH4NO3.

Одна из важнейших реакций озона с неорганическими веществами - разложение им йодистого калия. Эта реакция широко используется для количественного определения озона.

Озон реагирует в ряде случаев и с твердыми веществами, образуя озониды. Выделены озониды щелочных металлов, щелочноземельных металлов: стронция, бария, причем температура их стабилизации растет в указанном ряду; Са(O3) 2 стабилен при 238 К, Ва(O3) 2 при 273 К. Озониды разлагаются с образованием надперекиси, например NaO3 -> NaO2 + 1/2O2. Различные озониды образуются также при реакциях озона с органическими соединениями.

Озон окисляет многочисленные органические вещества, насыщенные, ненасыщенные и циклические углеводороды. Опубликовано много работ по исследованию состава продуктов реакции озона с различными ароматическими углеводородами: бензолом, ксилолами, нафталином, фенантреном, антраценом, бензантраценом, дифениламином, хинолином, акриловой кислотой и др. Он обесцвечивает индиго и многие другие органические красители, благодаря чему им пользуются даже для отбелки тканей.

Скорость реакции озона с двойной связью С=С в 100 000 раз выше, чем скорость реакции озона с одинарной связью С-С. Поэтому от озона в первую очередь страдают каучуки и резины. Озон реагирует с двойной связью с образованием промежуточного комплекса:

Эта реакция идет достаточно быстро уже при температурах ниже 0°С. В случае предельных соединении озон является инициатором обычной реакции окисления:

Интересно взаимодействие озона с некоторыми органическими красителями, которые сильно флюоресцируют при наличии озона в воздухе. Таковы, например, эйхрозин, рибофлавин и люминол (триаминофталгидразид), и особенно, родамин-В и, сходный с ним родамин-С.

Высокие окислительные свойства озона, разрушающие органические вещества и окисляющие металлы (в особенности железо) до нерастворимой формы, способность разлагать растворимые в воде газообразные соединения, насыщать водные растворы кислородом, низкая стойкость озона в воде и самоликвидация его опасных для человека свойств - все это в совокупности делает озон наиболее привлекательным веществом для подготовки хозяйственной воды и обработки различных стоков.

Синтез озона

Озон образуется в газовой среде, содержащей кислород, если возникнут условия, при которых кислород диссоциирует на атомы. Это возможно во всех формах электрического разряда: тлеющем, дуговом, искровом, коронном, поверхностном, барьерном, безэлектродном и т.п. Основной причиной диссоциации является столкновение молекулярного кислорода с электронами, ускоренными в электрическом поле.

Кроме разряда диссоциацию кислорода вызывают УФ-излучение с диной волны менее 240 нм и различные частицы высокой энергии: альфа-, бета-, гамма - частицы, рентгеновские лучи и т.п. Озон получают также при электролизе воды.

Практически во всех источниках образования озона существует группа реакций, в результате которых озон разлагается. Они мешают образованию озона, но реально существуют, и их необходимо учитывать. Сюда входит термическое разложение в объеме и на стенках реактора, его реакции с радикалами и возбужденными частицами, реакции с добавками и примесями, которые могут контактировать с кислородом и озоном.

Полный механизм состоит из значительного числа реакций. Реальные установки, на каком бы принципе они ни работали, показывают высокие энергетические затраты на выработку озона. КПД генератора озона зависит от того, на какую – полную или активную – мощность рассчитывается единица массы образовавшегося озона.

Барьерный разряд

Под барьерным разрядом понимают разряд, возникающий между двумя диэлектриками или диэлектриком и металлом. Из-за того, что электрическая цепь разорвана диэлектриком, питание осуществляется только переменным током. Впервые озонатор, близкий к современным, был предложен в 1897 г. Сименсом.

При небольших мощностях озонатор можно не охлаждать, так как выделяющееся тепло уносится с потоком кислорода и озона. В промышленных производствах озон также синтезируют в дуговых озонаторах (плазмотроны), в генераторах озона тлеющего (лазеры) и поверхностного разряда.

Фотохимический способ

Основная доля произведенного на Земле озона в природе образуется фотохимическим способом. В практической деятельности человека фотохимические методы синтеза играют меньшую роль, чем синтезы в барьерном разряде. Главная область их использования - получение средних и малых концентраций озона. Такие концентрации озона требуются, например, при испытании резинотехнических изделий на устойчивость к растрескиванию под действием атмосферного озона. На практике для производства озона данным методом применяются ртутные и эксимерные ксеноновые лампы.

Электролитический метод синтеза

Первое упоминание об образовании озона в электролитических процессах относится к 1907 г. Однако до настоящего времени механизм его образования остается неясным.

Обычно в качестве электролита применяют водные растворы хлорной или серной кислоты, электроды изготовляют из платины. Использование кислот, меченных О18, показало, что они не отдают своего кислорода при образовании озона. Поэтому брутто-схема должна учитывать только разложение воды:

Н2О + O2 -> O3 + 2Н+ + e-

с возможным промежуточным образованием ионов или радикалов.

Образование озона под действием ионизирующего излучения

Озон образуется в ряде процессов, сопровождающихся возбуждением молекулы кислорода либо светом, либо электрическим полем. При облучении кислорода ионизирующей радиацией также могут возникать возбужденные молекулы, и наблюдается образование озона. Образование озона под действием ионизирующего излучения до настоящего времени не было использовано для синтеза озона.

Образование озона в СВЧ-поле

При пропускании струи кислорода через СВЧ-поле наблюдалось образование озона. Этот процесс мало изучен, хотя генераторы, основанные на этом явлении, часто используются в лабораторной практике.

Применение озона в быту и влияние его на человека

Озонирование воды, воздуха и других веществ

Озонированная вода не содержит токсичных галогенметанов - типичных примесей стерилизации воды хлором. Процесс озонирования проводят в барботажных ваннах или смесителях, в которых очищенная от взвесей вода смешивается с озонированным воздухом или кислородом. Недостаток процесса - быстрое разрушение О3 в воде (период полураспада 15-30 минут).

Озонирование применяют также в пищевой промышленности для стерилизации холодильников, складов, устранения неприятного запаха; в медицинской практике - для обеззараживания открытых ран и лечения некоторых хронических заболеваний (трофические язвы, грибковые заболевания), озонирования венозной крови, физиологических растворов.

Современные озонаторы, в которых озон получают с помощью электрического разряда в воздухе или в кислороде, состоят из генераторов озона и источников питания и являются составной частью озонаторных установок, включающих в себя, кроме озонаторов, вспомогательные устройства.

В настоящее время озон является газом, используемым в так называемых озоновых технологиях: очистка и подготовка питьевой воды, очистка сточных вод (бытовых и промышленных стоков), отходов газов и др.

В зависимости от технологии использования озона производительность озонатора может составлять от долей грамма до десятков килограмм озона в час. Специальные озонаторы применяются для газовой стерилизации медицинского инструментария и мелкого оборудования. Стерилизация осуществляется в искусственно увлажненной озонокислородной среде, заполняющей стерилизационную камеру. Цикл стерилизации состоит из стадии замещения воздуха в стерилизационной камере увлажненной озонокислородной смесью, стадии стерилизационной выдержки и стадии замещения озонокислородной смеси в камере микробиологически очищенным воздухом.

Озонаторы, применяемые в медицине для озонотерапии, имеют широкий диапазон регулирования концентрации озонокислородной смеси. Гарантированная точность вырабатываемой концентрации озонокислородной смеси контролируется системой автоматики озонатора и автоматически поддерживается.

Биологическое действие озона

Биологическое действие озона зависит от способа его применения, дозы и концентрации. Многие из его эффектов в разных диапазонах концентраций проявляются в различной степени. В основе лечебного действия озонотерапии лежит применение озонокислородных смесей. Высокий окислительно-восстановительный потенциал озона обуславливает его системное (восстановление кислородного гомеостаза) и локальное (выраженное дезинфицирующее) лечебное действие.

Впервые озон как антисептическое средство был использован А. Wolff в 1915 г. для лечения инфицированных ран. В последние годы озонотерапию успешно применяют практически во всех областях медицины: в неотложной и гнойной хирургии, общей и инфекционной терапии, гинекологии, урологии, гастроэнтерологии, дерматологии, косметологии и др. Использование озона обусловлено его уникальным спектром воздействия на организм, в т.ч. иммуномодулирующим, противовоспалительным, бактерицидным, противовирусным, фунгицидным и др.

Однако нельзя и отрицать, что методы использования озона в медицине, несмотря на явные преимущества по многим биологическим показателям, до сих пор широкого применения не получили. Согласно литературным данным высокие концентрации озона являются абсолютно бактерицидными практически для всех штаммов микроорганизмов. Поэтому озон используется в клинической практике как универсальный антисептик при санации инфекционно-воспалительных очагов различной этиологии и локализации.

В литературе встречаются данные о повышенной эффективности антисептических препаратов после их озонирования при лечении острых гнойных хирургических заболеваний.

Выводы относительно бытового использования озона

Прежде всего, нужно безоговорочно подтвердить факт применение озона в практике врачевания во многих областях медицины, как терапевтического и обеззараживающего средства, однако говорить о широком его применении пока не приходится.

Озон воспринимается человеком с наименьшими побочными аллергическими проявлениями. И даже если в литературе можно найти упоминание об индивидуальной непереносимости O3, то эти случаи никак не могут быть сопоставимы, например, с хлорсодержащими и прочими галогенопроизводными антибактериальными препаратами.

Озон - трёхатомный кислород и наиболее экологичен. Кому не знаком его запах “свежести” – в летние жаркие дни после грозы?! Постоянное присутствие его в земной атмосфере испытывает на себе любой живой организм.

Обзор составлен по материалам сети Интернет.

Введение

Озон - простое вещество, аллотропное видоизменение кислорода. В отличие от кислорода, молекула озона состоит из трех атомов. При обыкновенных условиях представляет из себя резко пахнущий взрывчатый газ синего цвета, и обладающий сильнейшими окислительными свойствами.

Озон является постоянным компонентом атмосферы земли играет важнейшую роль для поддержания на ней жизни. В приземных слоях земной атмосферы концентрация озона резко возрастает. Общее состояние озона в атмосфере переменное, и колеблется в зависимости от времен года. Атмосферный озон играет ключевую роль для поддержания жизни на земле. Он защищает Землю от губительного воздействия определенной роли солнечной радиации, способствуя тем самым сохранению жизни на планете.

Таким образом, необходимо узнать, какие же действия может оказывать озон на биологические ткани.

Общие свойства озона

Озон - состоящая из трехатомных молекул О 3 аллотропная модификация кислорода. Его молекула диамагнитна и имеет угловую форму. Связь в молекуле является делокализованной, трехцентровой.

Рис. 1 Строение озона

Обе связи O-O в молекуле озона имеют одинаковую длину 1,272 Ангстрем. Угол между связями составляет 116,78°. Центральный атом кислорода sp ²-гибридизован, имеет одну неподелённую пару электронов. Молекула полярна, дипольный момент 0,5337 D.

Характер химических связей в озоне обусловливает его неустойчивость (через определенное время озон самопроизвольно переходит в кислород: 2О3 ->3О2) и высокую окислительную способность (озон способен на ряд реакций в которые молекулярный кислород не вступает). Окислительное действие озона на органические вещества связанно с образованием радикалов: RH+ О3 RО2 +OH

Эти радикалы инициируют радикально цепные реакции с биоорганическими молекулами (липидами, белками, нуклеиновыми кислотами), что приводит к гибели клеток. Применение озона для стерилизации питьевой воды основано на его способности убивать микробы. Озон не безразличен и для высших организмов. Длительное пребывание в атмосфере, содержащей озон (например, в кабинетах физиотерапии и кварцевого облучения) может вызвать тяжелые нарушения нервной системы. Поэтому, озон в больших дозах является токсичным газом. Предельно допустимая концентрация его в воздухе рабочей зоны – 0,0001 мг/литр. Загрязнение озоном воздушной среды происходит при озонировании воды, вследствие его низкой растворимости.



История открытия.

Впервые озон обнаружил в 1785 году голландский физик М. ван Марум по характерному запаху и окислительным свойствам, которые приобретаетвоздух после пропускания через него электрических искр, а также по способности действовать на ртуть при обыкновенной температуре, вследствие чего она теряет свой блеск и начинает прилипать к стеклу. Однако как новое вещество он описан не был, ван Марум считал, что образуется особая «электрическая материя».

Термин озон был предложен немецким химиком X. Ф. Шёнбейном в 1840 году за его пахучесть, вошёл в словари в конце XIX века. Многие источники именно ему отдают приоритет открытия озона в 1839 году. В 1840 году Шёнбейн показал способность озона вытеснять иод из иодида калия:

Факт уменьшения объёма газа при превращении кислорода в озон экспериментально доказали Эндрюс и Тэт при помощи стеклянной трубки с манометром, наполненной чистым кислородом, со впаянными в неё платиновыми проволками для получения электрического разряда.

Физические свойства.

Озон - газ, обладающий синим цветом, который можно заметить, если смотреть через значительный слой, до 1 метра толщиной, озонированного кислорода. В твёрдом состоянии озон чёрного цвета с фиолетовым отблеском. Жидкий озон обладает густым синим цветом; прозрачен в слое, не превышающем 2 мм. толщины; довольно прочен.

Свойства:

§ Молекулярная масса - 48 а.е.м.

§ Плотность газа при нормальных условиях - 2,1445 г/дм³. Относительная плотность газа по кислороду 1,5; по воздуху - 1,62

§ Плотность жидкости при −183 °C - 1,71 г/см³

§ Температура кипения - −111,9 °C. (у жидкого озона - 106 °C.)

§ Температура плавления - −197,2 ± 0,2 °С (приводимая обычно т.пл. −251,4 °C ошибочна, так как при её определении не учитывалась большая способность озона к переохлаждению).

§ Растворимость в воде при 0 °С - 0,394 кг/м³ (0,494 л/кг), она в 10 раз выше по сравнению с кислородом.

§ В газообразном состоянии озон диамагнитен, в жидком - слабопарамагнитен.

§ Запах - резкий, специфический «металлический» (по Менделееву - «запах раков»). При больших концентрациях напоминает запах хлора. Запах ощутим даже при разбавлении 1: 100000.

Xимuчecкие свойства.

Химические свойства озона определяются его большой способностью к окислению.

Молекула О 3 неустойчива и при достаточных концентрациях в воздухе при нормальных условиях самопроизвольно за несколько десятков минут превращается в O 2 с выделением тепла. Повышение температуры и понижение давления увеличивают скорость перехода в двухатомное состояние. При больших концентрациях переход может носить взрывной характер.

Свойства:

§ Окисление металлов

§ Окисление неметаллов

§ Взаимодействие с оксидами

§ Горение

§ Образование озонидов

Способы получения озона

Озон образуется во многих процессах, сопровождающихся выделением атомарного кислорода, например при разложении перекисей, окислении фосфора и т. п. В промышленности его получают из воздуха или кислорода в озонаторах действием электрического разряда. Сжижается O3 легче, чем O2, и потому их несложно разделить. Озон для озонотерапии в медицине получают только из чистого кислорода. При облучении воздуха жёстким ультрафиолетовым излучением образуется озон. Тот же процесс протекает в верхних слоях атмосферы, где под действием солнечного излучения образуется и поддерживается озоновый слой.

Ниже мы еще остановимся на получении кислорода из воздуха, а пока зайдем в помещение, где работают электродвигатели и в котором мы умышленно выключили вентиляцию.

Сами по себе эти двигатели не могут служить источником загрязнения воздуха, так как они ничего из воздуха не потребляют и ничего в воздух не отдают. Однако при дыхании здесь чувствуется некоторое раздражение в горле. Что произошло с воздухом, который был чист до пуска двигателей?

В этом помещении работают так называемые коллекторные моторы. На подвижных контактах мотора - ламелях - часто образуется искра. В искре при высокой температуре молекулы кислорода соединяются между собой, образуя озон (O 3).

Молекула кислорода состоит из 2 атомов, которые всегда проявляют две валентности (0 = 0).

Как же представить себе строение молекулы озона? Валентность кислорода измениться не может: атомы кислорода в озоне должны также иметь двойную связь. Поэтому молекулу озона обычно изображают в виде треугольника, в углах которого расположены 3 атома кислорода.

Озон - газ голубоватого цвета с резким специфическим запахом. Образование озона из кислорода происходит с большим поглощением тепла.

Слово «озон» взято из греческого «аллос» - другой и «тропос» - поворот и означает образование простых веществ из одного и того же элемента.

Озон является аллотропическим видоизменением кислорода. Это простое вещество. Его молекула состоит из 3 атомов кислорода. В технике озон получают в специальных приборах, называемых озонаторами.

В этих приборах кислород пропускают через трубку, в которой помещен электрод, подключенный к источнику тока высокого напряжения. Вторым электродом служит проволока, намотанная на наружной части трубки. Между электродами создается электрический разряд, в котором из кислорода образуется озон. Кислород, выходящий из озонатора, содержит около 15 процентов озона.

Озон образуется также при действии на кислород лучей радиоактивного элемента радия или сильного потока ультрафиолетовых лучей. Кварцевые лампы, которые широко применяются в медицине, излучают ультрафиолетовые лучи. Вот почему в помещении, где долго работала кварцевая лампа, воздух становится удушающим.

Можно получить озон и химическим путем - действием концентрированной серной кислоты на марганцевокислый калий или окислением влажного фосфора.

Молекулы озона очень неустойчивы и легко распадаются с образованием молекулярного и атомарного кислорода (О 3 = O 2 + O). Так как атомарный кислород чрезвычайно легко окисляет различные соединения, озон является сильным окислителем. При комнатной температуре он легко окисляет ртуть и серебро, которые в атмосфере кислорода достаточно устойчивы.

Под действием озона органические красители обесцвечиваются, а каучуковые изделия разрушаются, теряют эластичность и трескаются при легком сжатии.

Такие горючие вещества, как эфир, спирт, светильный газ, воспламеняются при соприкосновении с сильно озонированным воздухом. Вата, через которую пропускают озонированный воздух, также воспламеняется.

Сильные окислительные свойства озона применяются для обеззараживания воздуха и воды. Озонированный воздух, пропущенный через воду, уничтожает в ней болезнетворные бактерии и несколько улучшает ее вкус и цвет.

Озонирование воздуха с целью уничтожения вредоносных бактерий не находит широкого применения, так как для эффективной очистки воздуха необходима значительная концентрация озона, а в большой концентрации он вреден для здоровья человека - вызывает сильное удушье.

В малых концентрациях озон даже приятен. Так бывает, например, после грозы, когда в огромной электрической искре блеснувшей молнии из кислорода воздуха образуется озон, который постепенно распределяется в атмосфере, вызывая легкое, приятное ощущение при дыхании. То же мы испытываем в лесу, особенно в густом сосновом бору, где под воздействием кислорода происходит окисление различных органических смол с выделением озона. Скипидар, который входит в состав смолы хвойного дерева, окисляется особенно легко. Вот почему в хвойных лесах воздух всегда содержит некоторое количество озона.

У здорового человека воздух соснового бора вызывает приятное ощущение. А для человека с больными легкими этот воздух полезен и необходим для лечения. Советское государство использует богатые сосновые леса в различных районах нашей родины и создает там лечебные санатории.

ОЗОН (О 3) — аллотропная модификация кислорода, его молекула состоит из трех атомов кислорода и может существовать во всех трех агрегатных состояниях. Молекула озона имеет угловую структуру в форме равнобедренного треугольника с вершиной 127 o . Однако замкнутого треугольника не образуется, а молекула имеет строение цепи из 3-х атомов кислорода с расстоянием между ними 0,224 нм. В соответствии с этой молекулярной структурой дипольный момент составляет 0,55 дебай. В электронной структуре молекулы озона имеются 18 электронов, которые образуют мезомерностабильную систему, существующую в различных пограничных состояниях. Пограничные ионные структуры отражают дипольный характер молекулы озона и объясняют его специфическое реакционное поведение в сравнении с кислородом, который образует радикал с двумя неспаренными электронами. Молекула озона состоит из трех атомов кислорода. Химическая формула этого газа– O 3 Реакция образования озона: 3O 2 + 68 ккал/моль (285 кДж/моль) ⇄ 2O 3 Молекулярная масса озона – 48 При комнатной температуре озон — это бесцветный газ с характерным запахом. Запах озона чувствуется при концентрации 10 -7 М. В жидком состоянии озон — это темно-синий цвет с температурой плавления -192,50 С. Твердый озон представляет собой кристаллы черного цвета с температурой кипения -111,9 гр.С. При температуре 0 гр. и 1 атм. = 101,3 кПа плотность озона составляет 2,143 г/л. В газообразном состоянии озон диамагнитен и выталкивается из магнитного поля, в жидком -слабопарамагнитен, т.е. обладает собственным магнитным полем и втягивается в магнитное поле.

Химические свойства озона

Молекула озона неустойчива и при достаточных концентрациях в воздухе при нормальных условиях самопроизвольно превращается в двухатомный кислород с выделением тепла. Повышение температуры и понижение давления увеличивают скорость разложения озона. Контакт озона даже с малыми количествами органических веществ, некоторых металлов или их окислов резко ускоряет превращение. Химическая активность озона очень велика, это мощный окислитель. Он окисляет почти все металлы (за исключением золота, платины и иридия) и многие неметаллы. Продуктом реакции в основном является кислород. Озон растворяется в воде лучше, чем кислород, образуя нестойкие растворы, причём скорость его разложения в растворе в 5 -8 раз выше, чем в газовой фазе, чем в газовой фазе (Разумовский С.Д., 1990). Это обусловлено, по-видимому, не спецификой конденсированной фазы, а его реакциями с примесями и ионом гидроксила, поскольку скорость распада очень чувствительна к содержанию примесей и рН. Растворимость озона в растворах хлорида натрия подчиняется закону Генри. С увеличением концентрации NaCl в водном растворе растворимость озона уменьшается (Тарунина В.Н. и соавт.,1983). Озон имеет очень высокое сродство к электрону (1,9 эВ), что и обуславливает его свойства сильного окислителя, превосходимого только фтором (Разумовский С.Д., 1990).

Биологические свойства озона и его влияние на организм человека

Высокая окисляющая способность и то, что во многих химических реакциях, протекающих с участием озона, образуются свободные радикалы кислорода, делают этот газ крайне опасным для человека. Как газообразный озон влияет на человека:
  • Раздражает и повреждает ткани органов дыхания;
  • Воздействует на холестерин в крови человека, образуя нерастворимые формы, что приводит к атеросклерозу;
  • Долгое нахождение в среде с повышенной концентрацией озона может стать причиной мужского бесплодия.
В Российской Федерации озон отнесён к первому, самому высокому классу опасности вредных веществ. Нормативы по озону:
  • Максимальная разовая предельно допустимая концентрация (ПДК м.р.) в атмосферном воздухе населённых мест 0,16 мг/м 3
  • Среднесуточная предельно допустимая концентрация (ПДК с.с.) – 0,03 мг/м 3
  • Предельно допустимая концентрация (ПДК) в воздухе рабочей зоны – 0,1 мг/м 3 (при этом, порог человеческого обоняния приближённо равен 0,01 мг/м 3).
Высокую токсичность озона, а именно – его способность эффективно убивать плесень и бактерии, используют для дезинфекции. Применение озона вместо средств дезинфекции на основе хлора позволяет существенно сократить загрязнение окружающей среды хлором, опасным, в числе прочего, и для стратосферного озона. Стратосферный озон играет роль защитного экрана для всего живого на земле, препятствуя проникновению к поверхности Землю жесткого ультрафиолетового излучения.

Вредные и полезные свойства озона

Озон присутствует в двух слоях атмосферы. Тропосферный или приземный озон, находящийся в ближайшем к поверхности Земли слое атмосферы-в тропосфере – опасен. Он вреден и для человека, и для других живых организмов. Он губительно воздействует на деревья, посевы сельскохозяйственных культур. Кроме того, тропосферный озон-один из главных „ингредиентов“ городского смога. В тоже время стратосферный озон очень полезен. Разрушение образованного им озонового слоя (озонового экрана) приводит к тому, что поток ультрафиолетового излучения на земную поверхность увеличивается. Из-за этого возрастает количество заболеваний раком кожи (в том числе наиболее опасного его вида-меланомы), случаев катаракты. Воздействие жесткого ультрафиолета ослабляет иммунитет. Избыточное УФ-излучение может также стать проблемой для сельского хозяйства, так как посевы некоторых культур чрезвычайно чувствительны к ультрафиолету. В то же время следует помнить, что озон – ядовитый газ, и на уровне земной поверхности он является вредоносным загрязнителем. Летом из-за интенсивного солнечного излучения и жары в воздухе образуется особенно много вредоносного озона.

Взаимодействие озона и кислорода друг с другом. Сходства и различия.

Озон – аллотропная форма кислорода. Аллотропия – существование одного и того же химического элемента в виде двух и более простых веществ. В данном случае и озон (O3) и кислород (O 2) образованы химическим элементом О. Получение озона из кислорода Как правило, исходным веществом для получения озона выступает молекулярный кислород (O 2), а сам процесс описывается уравнением 3O 2 → 2O 3 . Эта реакция эндотермична и легко обратима. Для смещения равновесия в сторону целевого продукта (озона) применяются определенные меры. Один из способов получения озона – использование дугового разряда. Термическая диссоциация молекул резко возрастает с ростом температуры. Так, при Т=3000К - содержание атомарного кислорода составляет ~10 %. Температуру в несколько тысяч градусов можно получить при помощи дугового разряда. Однако при высокой температуре озон разлагается быстрее молекулярного кислорода. Чтобы предотвратить это, можно сместить равновесие, сначала нагрев газ, а затем резко его охладив. Озон в данном случае-промежуточный продукт при переходе смеси O 2 +O к молекулярному кислороду. Максимальная концентрация O 3 , которую можно получить при таком способе производства, достигает 1 %. Этого достаточно для большинства промышленных целей. Окислительные свойства озона Озон - мощный окислитель, намного более реакционноспособный по сравнению с двухатомным кислородом. Окисляет почти все металлы и многие неметаллы с образованием кислорода: 2 Cu 2+ (aq) + 2 H 3 O + (aq) + O 3(g) → 2 Cu 3+ (aq) + 3 H 2 O (1) + O 2(g) Озон может участвовать в реакциях горения, температура горения при этом выше, чем при горении в атмосфере двухатомного кислорода: 3 C 4 N 2 + 4 O 3 → 12 CO + 3 N 2 Стандартный потенциал озона равен 2.07 В, поэтому молекула озона неустойчива и самопроизвольно превращается в кислород с выделением тепла. При небольших концентрациях озон разлагается медленно, при высоких — со взрывом, т.к. его молекула обладает избыточной энергией. Нагревание и контакт озона с ничтожными количествами органических веществ (гидроокиси, перекиси, металлы переменной валентности, их окислы) резко ускоряет превращение. Напротив, присутствие небольших количеств азотной кислоты стабилизирует озон, а в сосудах из стекла и некоторых пластмасс или чистых металлов озон при -78 0 C. практически разлагается. Сродство озона к электрону равняется 2 эв. Таким сильным сродством обладает только фтор и его окислы. Озон окисляет все металлы (за исключением золота и платиновых), а также большинство других элементов. Хлор участвует в реакциях с озоном с образованием гипохлора ОCL. Реакции озона с атомарным водородом являются источником образования гидроксильных радикалов. Озон имеет максимум поглощения в УФ-области при длине волны 253,7 нм с молярным коэффициентом экстинции: E = 2,900 На основании этого УФ-фотометрическое определение концентрации озона вместе с йодо-метрическим титрованием принято за международные стандарты. Кислород, в отличие от озона, в реакцию с KI не вступает.

Растворимость озона и его стабильность в водных растворах

Скорость разложения озона в растворе в 5-8 раз выше, чем в газовой фазе. Растворимость озона в воде в 10 раз выше, чем кислорода. По данным разных авторов величина коэффициента растворимости озона в воде колеблется от 0,49 до 0,64 мл озона/ мл воды. В идеальных термодинамических условиях равновесие подчиняется закону Генри, т.е. концентрация насыщенного раствора газа пропорциональна его парциальному давлению. C S = B × d × Рi где: С S — концентрация насыщенного раствора в воде; d — масса озона; Pi — парциальное давление озона; B — коэффициент растворения; Выполнение закона Генри для озона как метастабильного газа условно. Распад озона в газовой фазе зависит от парциального давления. В водной среде имеют место процессы, выходящие за область действия закона Генри. Вместо него в идеальных условиях действует закон Gibs-Dukem-Margulesdu. В практике принято выражать растворимость озона в воде через соотношение концентрации озона в жидкой среде к концентрации озона в газовой фазе: Насыщение озоном зависит от температуры и качества воды, поскольку органические и неорганические примеси изменяют рН среды. При одинаковых условиях в водопроводной воде концентрация озона составляет 13 mg/l, в бидистиллированной воде — 20mg/l. Причиной этого является значительный распад озона из-за различных ионных примесей в питьевой воде.

Распад озона и период полураспада (т 1/2)

В водной среде распад озона сильно зависит от качества воды, температуры и рН среды. Повышение рН среды ускоряет распад озона и снижает при этом концентрацию озона в воде. Аналогичные процессы происходят при повышении температуры. Период полураспада озона в бидистиллированной воде составляет 10 часов, в деминерализованной воде — 80 минут; в дистиллированной воде — 120 минут. Известно, что разложение озона в воде является сложным процессом реакций радикальных цепей: Максимальное количество озона в водном образце наблюдается в течение 8-15 минут. Через 1 час в растворе отмечаются только свободные радикалы кислорода. Среди них важнейшим является гидроксильный радикал (ОН’) (Staehelin G., 1985), и это необходимо принимать во внимание при использовании озонированной воды в терапевтических целях. Поскольку в клинической практике находят применение озонированная вода и озонированный физиологический раствор, нами проведена оценка этих озонированных жидкостей в зависимости от концентраций, используемых в отечественной медицине. Основными методами анализа явились йодометрическое титрование и интенсивность хемилюминесценции с использованием прибора биохемилюминометра БХЛ-06 (производство Нижний Новгород) (Конторщикова К. Н., Перетягин С. П., Иванова И. П. 1995). Явление хемилюминесценции связано с реакциями рекомбинации свободных радикалов, образующихся при разложении озона в воде. При обработке 500 мл би- или дистиллированной воды барботированием озоно-кислородной газовой смесью с концентрацией озона в пределах 1000-1500 мкг/л и скоростью потока газа 1 л/мин в течение 20 минут хемилюминесценция выявляется в течение 160 минут. Причем в бидистиллированной воде интенсивность свечения существенно выше, чем в дистиллированной, что объясняется наличием примесей, гасящих свечение. Растворимость озона в растворах NaCl подчиняется закону Генри, т.е. уменьшается с увеличением концентрации солей. Физиологический раствор обрабатывали озоном с концентрацией 400, 800 и 1000 мкг/л в течение 15 минут. Общая интенсивность свечения (в mv) увеличивалась с ростом концентрации озона. Продолжительность свечения составляет 20 минут. Это объясняется более быстрой рекомбинацией свободных радикалов и отсюда гашением свечения за счет наличия в физиологическом растворе примесей. Несмотря на высокий окислительный потенциал, озон обладает высокой селективностью, которая обусловлена полярным строением молекулы. Мгновенно реагируют с озоном соединения, содержащие свободные двойные связи (-С=С-). В результате чувствительными к действию озона являются ненасыщенные жирные кислоты, ароматические аминокислоты и пептиды, прежде всего содержащие SH- группы. Согласно данным Криге (1953) (цит. По Vieban R. 1994), первичным продуктом взаимодействия молекулы озона с биоорганическими субстратами является 1-3 диполярная молекула. Эта реакция является основной при взаимодействии озона с органическими субстратами при рН < 7,4. Озонолиз проходит в доли секунды. В растворах скорость этой реакции равна 105 г/моль·с. В первом акте реакции образуется пи-комплекс олефинов с озоном. Он относительно стабилен при температуре 140 0 С и затем превращается в первичный озонид (молозонид) 1,2,3-триоксалан. Другое возможное направление реакции — образование эпоксидных соединений. Первичный озонид нестабилен и распадается с образованием карбоксильного соединения и карбонилоксида. В результате взаимодействия карбонилоксида с карбонильным соединением образуется биполярный ион, который затем превращается во вторичный озонид 1,2,3 — триоксалан. Последний при восстановлении распадается с образованием смеси 2-х карбонильных соединений, с дальнейшим образованием пероксида (I) и озонида (II). Озонирование ароматических соединений протекает с образованием полимерных озонидов. Присоединение озона нарушает ароматическое сопряжение в ядре и требует затрат энергии, поэтому скорость озонирования гомологов коррелирует с энергией сопряжения. Озонирование насушенных углеводородов связано с механизмом внедрения. Озонирование серо- и азотосодержащих органических соединений протекает следующим образом: Озониды обычно плохо растворимы в воде, но хорошо в органических растворителях. При нагревании, действии переходных металлов распадаются на радикалы. Количество озонидов в органическом соединении определяется йодным числом. Йодное число — масса йода в граммах, присоединяющееся к 100 г органического вещества. В норме для жирных кислот йодное число составляет 100-400, для твердых жиров 35-85, для жидких жиров — 150-200. Впервые озон, как антисептическое средство был опробован A. Wolff еще в 1915 во время первой мировой войны. Последующие годы постепенно накапливалась информация об успешном применении озона при лечении различных заболеваний. Однако длительное время использовались лишь методы озонотерапии, связанные с прямыми контактами озона с наружными поверхностями и различными полостями тела. Интерес к озонотерапии усиливался по мере накопления данных о биологическом действии озона на организм и появления сообщений из различных клиник мира об успешном использовании озона при лечении целого ряда заболеваний. История медицинского применения озона начинается с XIX века. Пионерами клинического применения озона были западные ученые Америки и Европы, в частности, C. J. Kenworthy, B. Lust, I. Aberhart, Е. Payer, E. A. Fisch, Н. Н. Wolff и другие. В России о лечебном применении озона было известно мало. Только в 60-70 годы в отечественной литературе появилось несколько работ по ингаляционной озонотерапии и по применению озона в лечении некоторых кожных заболеваний, а с 80-х годов в нашей стране этот метод стал интенсивно разрабатываться и получать более широкое распространение. Основы для фундаментальных разработок технологий озонотерапии были во многом определены работами Института химической физики АМН СССР. Книга «Озон и его реакции с органическими веществами» (С. Д. Разумовский, Г. Е. Зайков, Москва, 1974 г.) явилась отправной точкой для обоснования механизмов лечебного действия озона у многих разработчиков. В мире широко действует Международная озоновая ассоциация (IOA), которая провела 20 международных конгрессов, а с 1991 года в работе этих конгрессов принимают участие и наши врачи и ученые. Совершенно по-новому сегодня рассматриваются проблемы прикладного использования озона, а именно в медицине. В терапевтическом диапазоне концентраций и доз озон проявляет свойства мощного биорегулятора, средства, способного во многом усилить методы традиционной медицины, а зачастую выступать в качестве средства монотерапии. Применение медицинского озона представляет качественно новое решение актуальных проблем лечения многих заболеваний. Технологии озонотерапии используются в хирургии, акушерстве и гинекологии, стоматологии, неврологии, при терапевтической патологии, инфекционных болезнях, дерматологии и венерических болезнях и целом ряде других заболеваний. Для озонотерапии характерна простота исполнения, высокая эффективность, хорошая переносимость, практическое отсутствие побочных действий, она экономически выгодна. Лечебные свойства озона при заболеваниях различной этиологии основаны на его уникальной способности воздействовать на организм. Озон в терапевтических дозах действует как иммуномодулирующее, противовоспалительное, бактерицидное, противовирусное, фунгицидное, цитостатическое, антистрессовое и аналгезирующее средство. Его способность активно коррегировать нарушенный кислородный гомеостаз организма открывает большие перспективы для восстановительной медицины. Широкий спектр методических возможностей позволяет с большой эффективностью использовать лечебные свойства озона для местной и системной терапии. В последние десятилетия на передний план вышли методы, связанные с парентеральным (внутривенным, внутримышечным, внутрисуставным, подкожным) введением терапевтических доз озона, лечебный эффект которых связан, в основном, с активизацией различных систем жизнедеятельности организма. Кислородно-озоновая газовая смесь при высоких (4000 — 8000 мкг/л) концентрациях в ней озона в эффективна при обработке сильно инфицированных, плохо заживающих ран, гангрене, пролежней, ожогов, грибковых поражениях кожи и т.п. Озон в высоких концентрациях можно также использовать как кровоостанавливающее средство. Низкие концентрации озона стимулируют репарацию, способствуют эпителизации и заживлению. В лечении колитов, проктитов, свищей и ряда других заболеваний кишечника используют ректальное введение кислородно-озоновой газовой смеси. Озон, растворенный в физиологическом растворе, успешно применяют при перитоните для санации брюшной полости, а озонированную дистиллированную воду в челюстной хирургии и др. Для внутривенного введения используется озон, растворенный в физиологическом растворе или в крови больного. Пионерами Европейской школы было высказано постулирующее положение о том, что главной целью озонотерапии является: «Стимуляция и реактивация кислородного метаболизма без нарушения окислительно-восстановительных систем»,- это значит, что при расчете дозировок на сеанс или курс, озонотерапевтическое воздействие должно находиться в пределах, в которых ферментативно выравниваются радикальные кислородные метаболиты или избыточно полученный пероксид» (З. Риллинг, Р. Фибан 1996 в кн. Практика озонотерапии). В зарубежной медицинской практике для парентерального введения озона используются, в основном, большая и малая аутогемотерапии. При проведении большой аутогемотерапии, взятая у пациента кровь тщательно смешивается с определенным объемом кислородно-озоновой газовой смеси, и сразу же капельно вводится обратно в вену того же пациента. При малой аутогемотерапии озонированная кровь вводится внутримышечно. Терапевтическая доза озона в этом случае выдерживается за счет фиксированных объемов газа и концентрации озона в нем.

Научные достижения отечественных учёных стали регулярно докладываться на международных конгрессах и симпозиумах

  • 1991 г. – Куба, Гавана,
  • 1993 г. – США Сан-Франциско,
  • 1995 г. – ФранцияЛилль,
  • 1997 г. – Япония, Киото,
  • 1998 г. – Австрия, Зальцбург,
  • 1999г. – Германия,Баден-Баден,
  • 2001 г. – Англия, Лондон,
  • 2005 г. – Франция,Страсбург,
  • 2009 г. – Япония, Киото,
  • 2010 г. — Испания, Мадрид
  • 2011 г.Турция(Стамбул),Франция (Париж),Мексика(Канкун)
  • 2012г. – Испания, Мадрид
Научными центрами разработок озонотерапии в России стали клиники городов Москвы и Нижнего Новгорода. Очень скоро к ним присоединились учёные из Воронежа, Смоленска, Кирова, Новгорода, Екатеринбурга, Саранска, Волгограда, Ижевска и других городов. Распространению технологий озонотерапии безусловно способствовало регулярное проведение Всероссийских научно-практических конференций с международным участием, организуемых по инициативе Ассоциации российских озонотерапевтов с 1992 года в г. Н. Новгород, собирающие специалистов со всех уголков страны.

Всероссийские научно-практические конференции с Международным участием по озонотерапии

I – «ОЗОН В БИОЛОГИИ И МЕДИЦИНЕ» – 1992 г ., Н.Новгород II – «ОЗОН В БИОЛОГИИ И МЕДИЦИНЕ» – 1995 г ., Н.Новгород III – «ОЗОН И МЕТОДЫ ЭФФЕРЕНТНОЙ ТЕРАПИИ» – 1998 г ., Н.Новгород IV – «ОЗОН И МЕТОДЫ ЭФФЕРЕНТНОЙ ТЕРАПИИ» – 2000 г ., Н.Новгород V – «ОЗОН В БИОЛОГИИ И МЕДИЦИНЕ» – 2003 г ., Н.Новгород VI – «ОЗОН В БИОЛОГИИ И МЕДИЦИНЕ» – 2005 г ., Н.Новгород «I Конференция по озонотерапии Азиатско-Европейского союза озонотерапевтов и производителей медоборудования»– 2006 г ., Большое Болдино, Нижегородская область VII – «ОЗОН В БИОЛОГИИ И МЕДИЦИНЕ» – 2007 г ., Н.Новгород У111«Озон, активные формы кислорода и методы интенсивной терапии в медицине» — 2009, г.Н.Новгород К 2000 г. Российская школа озонотерапии окончательно сформировала свой, отличающийся от Европейского, подход к применению озона как лечебного средства. Главные отличия — широкое использование физиологического раствора в качестве носителя озона, применение значительно более низких концентраций и доз озона, разработанные технологии экстракорпоральной обработки больших объёмов крови (озонированное искусственное кровообращение), индивидуальный выбор доз и концентраций озона при системной озонотерапии. В стремлении большинства российских врачей использовать наименьшие из эффективных концентраций озона нашел отражение основной принцип медицины — «не навреди». Безопасность и эффективность Российских методик озонотерапии многократно обоснована и доказана применительно к различным областям медицины. В результате многолетних фундаментально-клинических исследований нижегородскими учёными была «Установлена неизвестная закономерность формирования адаптационных механизмов организма млекопитающих при системном воздействии низкими терапевтическими дозами озона, заключающаяся в том, что пусковым механизмом является влияние озона на про- и антиоксидантный баланс организма и обусловленная умеренной интенсификацией свободно-радикальных реакций, что, в свою очередь, увеличивает активность ферментативного и неферментативного звеньев антиоксидантной системы защиты» (Конторщикова К. Н., Перетягин С. П.), на которую авторы получили открытие (Диплом № 309 от 16 мая 2006 г.). В работах отечественных учёных нашли развитие новые технологии и аспекты использования озона с лечебными целями:
  • Широкое использование в качестве носителя растворенного озона физиологического раствора (0,9% раствор NaCl)
  • Применение сравнительно малых концентраций и доз озона при системном воздействии (внутрисосудистое и внутрикишечное введение)
  • Внутрикостные вливания озонированных растворов
  • Внутрикоронарное введение озонированных кардиоплегических растворов
  • Тотальная экстракорпоральная обработка озоном больших объемов крови при искусственном кровообращении
  • Низкопоточная озонокислородная терапия
  • Внутрипортальное введение озонированных растворов
  • Применение озона на театре военных действий
  • Сопровождение системной озонотерапии методами биохимического контроля
В 2005-2007 гг. впервые в мировой практике в России озонотерапия получила официальный статус на государственном уровне в виде утверждения МЗ и социального развития РФ новых медицинских технологий использования озона в дерматологии и косметологии, акушерстве и гинекологии, травматологии. В настоящее время в нашей стране ведутся активные работы по распространению и внедрению метода озонотерапии. Анализ Российского и Европейского опыта озонотерапии позволяет сделать важные выводы :
  1. Озонотерапия — немедикаментозный метод лечебного воздействия, позволяющий получать положительные результаты при патологии различного генеза.
  2. Биологическое действие парентерально введенного озона проявляется на уровне низких концентраций и доз, что сопровождается клинически выраженными позитивными лечебными эффектами, имеющими четко выраженную дозозависимость.
  3. Опыт Российской и Европейской школ озонотерапии свидетельствует о том, что использование озона в качестве лечебного средства значительно повышает эффективность лекарственной терапии, позволяет в ряде случаев заменить или уменьшить фармакологическую нагрузку на пациента. На фоне озонотерапии восстанавливаются собственные кислородзависимые реакции и процессы больного организма.
  4. Технические возможности современных медицинских озонаторов, обладающих возможностями сверхточной дозировки, позволяют применять озон в диапазоне низких терапевтических концентраций аналогично общепринятым фармакологическим средствам.

Крайне ценными для всего человечества свойствами обладает такой газ, как озон. Химический элемент, которым он образован, - О. На самом деле, озон О 3 - одна из аллотропных модификаций оксигена, состоящая из трёх формульных единиц (О÷О÷О). Первое и более известное соединение - это сам кислород, точнее газ, который образован двумя его атомами (О=О) - О 2 .

Аллотропия - это способность одного химического элемента образовывать ряд различных по свойствам простых соединений. Благодаря ей человечество изучило и использует такие вещества, как алмаз и графит, моноклинная и ромбическая сера, кислород и озон. Химический элемент, имеющий такую способность, не обязательно ограничен только двумя модификациями, у некоторых их больше.

История открытия соединения

Составляющая единица многих органических и минеральных веществ, в том числе и такого как озон - химический элемент, обозначение которого О - оксиген, в переводе с греческого «oxys» - кислый, и «gignomai» - рождать.

Впервые новую во время опытов с электрическими разрядами обнаружил в 1785 году голландец Мартин ван Марун, его внимание привлёк специфический запах. А веком позже француз Шенбейн отметил присутствие такого же после грозы, в результате чего газ был назван «пахнущий». Но учёные несколько обманулись, считая, что их обоняние учуяло сам озон. Запах, который они чувствовали, принадлежал окисленным при взаимодействии с О 3 , так как газ очень реакционноспособен.

Электронное строение

Один и тот же структурный фрагмент имеют О2 и О3 - химический элемент. Озон имеет более сложное строение. В кислороде же всё просто - два атома оксигена соединены двойной связью, состоящей из ϭ- и π-составляющей, согласно валентности элемента. О 3 имеет несколько резонансных структур.

Кратная связь соединяет два кислорода, а третий имеет одинарную. Таким образом, вследствие миграции π-составляющей, в общей картине три атома имеют полуторное соединение. Эта связь короче, чем одинарная, но длиннее, чем двойная. Вероятность цикличности молекулы проведённые учёными эксперименты исключают.

Методы синтеза

Для образования такого газа, как озон, химический элемент оксиген должен находиться в газообразной среде в виде отдельных атомов. Такие условия создаются при соударении молекул кислорода О 2 с электронами во время электрических разрядов или другими частицами с большой энергией, а также при его облучении ультрафиолетом.

Львиная доля от общего количества озона в естественных условиях атмосферы образуется фотохимическим способом. Человек предпочитает в химической деятельности использовать другие методы, такие как, например, электролитический синтез. Он заключается в том, что в водную среду электролита помещают платиновые электроды и пускают ток. Схема реакции:

Н 2 О + О 2 → О 3 + Н 2 + е -

Физические свойства

Кислород (О) - составная единица такого вещества как озон - химический элемент, формула которого, а также относительная молярная масса указаны в таблице Менделеева. Образуя О 3 , оксиген приобретает свойства, кардинально отличающиеся от свойств О 2 .

Газ голубого цвета - это обычное состояние такого соединения, как озон. Химический элемент, формула, количественные характеристики - все это определили при идентификации и изучении данного вещества. для него -111,9 °C, сжиженное состояние имеет темно-фиолетовый окрас, при дальнейшем понижении градуса до -197,2 °C начинается плавление. В твёрдом агрегатном состоянии озон приобретает чёрный цвет с фиолетовым отливом. Растворимость его в десять раз превышает это свойство кислорода О 2 . При самых незначительных концентрациях в воздухе чувствуется запах озона, он резок, специфичен и напоминает запах металла.

Химические свойства

Очень активным, с реакционной точки зрения, является газ озон. Химический элемент, который его образует - это кислород. Характеристики, определяющие поведение озона во взаимодействии с другими веществами, - это высокая окисляющая способность и неустойчивость самого газа. При повышенных температурах он разлагается с небывалой скоростью, процесс ускоряют и катализаторы, такие как оксиды металлов, азота и другие. Свойства окислителя присущи озону благодаря особенностям строения молекулы и подвижности одного из атомов оксигена, который отщепляясь, превращает газ в кислород: О 3 → О 2 + О·

Оксиген (кирпичик, из которого построены молекулы таких веществ, как кислород и озон) - химический элемент. Как пишется в уравнениях реакции - О·. Озон окисляет все металлы, за исключением золота, платины и его подгруппы. Он реагирует с газами, находящимися в атмосфере - оксидами серы, азота и прочими. Не остаются инертными и органические вещества, особенно быстро идут процессы разрывов кратных связей через образования промежуточных соединений. Крайне важно, что продукты реакций являются безвредными для окружающей среды и человека. Это вода, кислород, высшие оксиды различных элементов, окислы углерода. Во взаимодействие с озоном не вступают бинарные соединения кальция, титана и кремния с кислородом.

Применение

Основная область, где применяется «пахнущий» газ - это озонирование. Подобный метод стерилизации гораздо эффективнее и безопаснее для живых организмов, чем дезинфекция хлором. При не происходит образование токсичных производных метана, замещенных опасным галогеном.

Всё чаще такой экологический метод стерилизации находит применение в пищевой отрасли промышленности. Озоном обрабатывают холодильное оборудование, складские помещения для продуктов, с помощь него проводят устранение запахов.

Для медицины дезинфицирующие свойства озона также незаменимы. Им обеззараживают раны, физиологические растворы. Озонируют венозную кровь, а также «пахнущим» газом лечат ряд хронических заболеваний.

Нахождение в природе и значение

Простое вещество озон - элемент газового состава стратосферы, области околоземного пространства, расположенной на расстоянии порядка 20-30 км от поверхности планеты. Выделение этого соединения происходит во время процессов, связанных с электрическими разрядами, при сварке, работе аппаратов ксерокса. Но именно в стратосфере образуется и содержит 99% от общего количества озона, находящегося в атмосфере Земли.

Жизненно важным оказалось присутствие газа в околоземном пространстве. Он образует в нем так называемый озоновый слой, который защищает всё живое от смертельного ультрафиолетового излучения Солнца. Как ни странно, но наравне с огромной пользой, сам газ опасен для людей. Повышение концентрации озона в воздухе, которым дышит человек, вредно для организма, вследствие его крайней химической активности.