Какая разница между массой и весом. Базовая физика

В некоторых случаях сила тяжести и вес объекта равны по своему значению. Из-за этого может возникнуть ложное впечатление, что между данными величинами нет разницы. Попытаемся развеять подобные предположения и рассмотрим, чем отличается сила тяжести от веса тела.

Определение

Силой тяжести называют величину, отражающую притягивающее действие Земли на объект, расположенный близко к ее поверхности.

Сила тяжести

Вес тела рассматривают как силу, исходящую от предмета в отношении его опоры или верхнего крепления (например, нити или пружины).


Вес тела

Сравнение

Разобраться, в чем состоит отличие силы тяжести от веса тела, легче на конкретном примере. Так, лежащая на полке книга подвергается воздействию силы тяжести. Последняя приложена непосредственно к телу. Подобное явление гравитационной природы характеризуется взаимодействием предмета и Земли.

В то же время полка испытывает вес книги. Речь здесь идет о силе, которая направлена на опору. Взаимодействуют в нашем примере книга и полка, хотя причиной существования веса также является притяжение Земли. Если опору убрать, предмет будет свободно падать. При этом вес исчезнет и останется лишь сила тяжести, которая постоянно действует на тела, но может компенсироваться другими силами, например архимедовой.

Важно, что обе величины являются векторными. Но сила тяжести при любом размещении тела направлена вниз. Однако в случае с весом ключевое значение имеет положение в пространстве опоры. Такая сила всегда направлена перпендикулярно ей. Исследуемые величины совпадают по вектору только при условии, что опора, испытывающая вес, находится в горизонтальной плоскости.

Рассматривая, в чем разница между силой тяжести и весом тела, стоит подчеркнуть, что вторая из данных величин зависит от того, движется ли предмет и наблюдается ли при этом ускорение. Только если тело находится в покое или перемещается равномерно, вес не отличается по значению от силы тяжести. При других условиях равенство между величинами отсутствует. Например, вес в набирающем скорость лифте отличается от того, что был до отправки устройства и совпадал с силой тяжести.

Регулярно сталкиваюсь с тем, что люди не понимают разницу между весом и массой. Это в общем-то понятно, поскольку мы находимся всю жизнь в непрекращающем своё действие гравитационном поле Земли, и эти величины для нас постоянно связаны. И эта связь ещё и лингвистически закрепляется тем, что мы узнаём массу с помощью весов, "взвешиваем" себя или, скажем, продукты в магазине.
Но давайте всё-таки попробуем развязать эти понятия.

В тонкости (типа отличающегося g в разных местах Земли и прочего) мы вдаваться не будем. Отмечу, что всё это входит в школьный курс физики, поэтому если всё нижесказанное для вас очевидно, не ругайтесь на тех, кто не успел эти вещи понять, а заодно на тех, кто решил это в сотый раз объяснить.) Я надеюсь, что найдутся люди, которым эта заметка пополнит их аппарат понимания окружающего мира.

Итак, поехали. Масса тела - мера его инертности. То есть мера того, насколько трудно изменить скорость этого тела по модулю (разогнать или затормозить) либо по направлению. В системе СИ измеряется в килограммах (кг). Обозначается обычно буквой m. Является неизменным параметром, что на Земле, что в космосе.

Сила тяжести, измеряется в системе СИ в Ньютонах (Н). Это сила, с которой Земля притягивает тело, и равная произведению m*g. Коэффициент g равен 10 м/с2, называется ускорением свободного падения. С этим ускорением начинает двигаться тело относительно земной поверхности, лишённое опоры (в частности, если тело стартовало из неподвижного состояния, его скорость каждую секунду будет увеличиваться на 10 м/с).

А теперь рассмотрим тело массой m, неподвижно лежащее на столе. Для определённости пусть масса равна 1 кг. На это тело вертикально вниз действует сила тяжести mg (собственно сама вертикаль определяется как раз направлением силы тяжести), равная 10 Н. В технической системе единиц эту силу называют килограмм-силой (кгс).

Стол не позволяет разгоняться нашему телу, действуя на него с силой N, направленной вертикально вверх (эту силу правильнее рисовать от стола, но чтобы линии не накладывались, нарисую тоже из центра тела):

N называется силой реакции опоры, уравновешивает силу тяжести (в данном случае равна по модулю тем же самым 10 Ньютонам), так что равнодействующая сила F (сумма всех сил) равна нулю: F = mg - N = 0.

А то, что силы уравновешены, мы видим из второго закона Ньютона F = m*a, согласно которому если ускорение тела a равно нулю (то есть оно либо покоится, как в нашем случае, либо движется равномерно и прямолинейно), то равнодействующая сила F тоже равна нулю.

Вот теперь можно наконец сказать, что такое вес - это сила, с которой тело действует на подставку или подвес. Согласно третьему закону Ньютона эта сила противоположна силе N и равна ей по модулю. То есть в данном случае составляет те же 10 Н = 1 кгс. Вам, может быть, покажется, что всё это излишне сложно, и надо было сразу сказать, что вес и сила тяжести - одно и то же? Ведь они совпадают и по направлению, и по величине.

Нет, на самом деле они отличаются существенно. Сила тяжести действует постоянно. Вес меняется в зависимости от ускорения тела. Давайте приведём примеры.

1. Вы стартуете вверх на скоростном лифте (скоростном, чтобы фаза ускорения была эффектнее/заметнее). Ваша масса, скажем, 70 кг (вы можете пересчитать все числа ниже для вашей массы). Ваш вес в неподвижном лифте (перед стартом) равен 700 Н (или 70 кгс). В момент разгона вверх результирующая сила F направлена вверх (именно она вас и разгоняет), сила реакции N превышает силу тяжести mg, и поскольку ваш вес (сила, с которой вы действуете на пол лифта) по модулю совпадает с N, вы испытываете так называемую перегрузку. Если бы лифт разгонялся с ускорением g, то вы бы испытали вес 140 кгс, то есть перегрузку 2g, в 2 раза превышающую вес в состоянии покоя. На самом деле в штатном режиме таких перегрузок в лифтах не бывает, ускорение обычно не превышает 1 м/с2, что приводит к перегрузке всего 1.1g. Вес в нашем случае составит 77 кгс. Когда лифт разогнался до нужной скорости, ускорение равно нулю, вес возвращается к начальным 70 кгс. При замедлении вес, напротив, уменьшается, и если ускорение при этом по модулю равно 1 м/с2, то перегрузка составит 0.9g. При движении в обратную сторону (вниз) ситуация переворачивается: при разгоне вес уменьшается, на равномерном участке вес восстанавливается, при замедлении вес увеличивается.

2. Вы бежите, и ваш вес в состоянии покоя по-прежнему 70 кгс. В момент бега, когда вы отталкиваетесь от земли, ваш вес превышает 70 кгс. А пока вы летите (одна нога оторвалась от земли, другая - еще не коснулась), ваш вес равен нулю (поскольку вы не воздействуете ни на подставку, ни на подвес). Это - невесомость. Правда, совсем короткая. Таким образом, бег - это чередование перегрузок и невесомости.

Напомню, что сила тяжести во всех этих примерах никуда не девалась, не менялась, и составляла ваши "кровные" 70 кгс = 700 Н.

Теперь существенно удлиним фазу невесомости: представьте, что вы находитесь на МКС (международной космической станции). При этом мы не устранили силу тяжести - она по-прежнему действует на вас - но поскольку и вы, и станция находитесь в одинаковом орбитальном движении, то относительно МКС вы в невесомости. Можно представить себя где угодно в открытом космосе, просто МКС немного реалистичнее.)

Каким будет ваше взаимодействие с объектами? Ваша масса 70 кг, вы берёте в руку объект массой 1 кг, отбрасываете его от себя. В соответствии с законом сохранения импульса основную скорость получит 1-кг-объект, как менее массивный, и бросок будет примерно столь же "легким", как и на Земле. Но если вы попытаетесь оттолкнуться от объекта массой 1000 кг, то вы фактически оттолкнете себя от него, поскольку основную скорость в этом случае получите вы сами, и для разгона своих 70 кг придётся развить бОльшую силу. Чтобы примерно это представить, каково это, можете подойти сейчас к стене и оттолкнуться от неё руками.

Теперь вы вышли из станции в открытый космос и хотите поманипулировать каким-то массивным объектом. Пусть его масса будет пять тонн.

Честно сказать, я бы прямо очень поостерегся управляться с пятитонным объектом. Да, невесомость и все дела. Но достаточно лишь небольшой его скорости относительно МКС, чтобы прижать вам палец или чего-то посерьёзнее. Эти пять тонн сложно переместить: разогнать, остановить.

А уж представлять, как предложил один человек, себя между двумя объектами массой по 100 тонн и вовсе не хочется. Малейшее их встречное движение, и они вас с лёгкостью придавят. В полнейшей, что характерно, невесомости.)

Ну и наконец. Если вы будете весело лететь по МКС и ударитесь об стенку/переборку, то вам будет больно ровно так же, как если бы вы с той же скоростью бежали и ударились об стену/косяк в своей квартире. Потому что удар уменьшает вашу скорость (то есть сообщает вам ускорение со знаком минус), а ваша масса одинакова в обоих случаях. А значит по второму закону Ньютона и сила воздействия будет соразмерна.

Радует, что в фильмах про космос ("Гравитация", "Интерстеллар", сериал "The Expanse") всё более реалистично (пусть и не без огрехов типа Джорджа Клуни, безнадёжно улетающего от Сандры Буллок) отображают базовые вещи, описанные в этом посте.

Резюмирую. Масса "неотчуждаема" от объекта. Если объект сложно разогнать на Земле (особенно если вы постарались минимизировать трение), то его так же сложно разогнать и в космосе. А что касается весов, то когда вы на них становитесь, они просто измеряют силу, с которой их сдавливают, и для удобства отображают эту силу не в Ньютонах, а в кгс. Не дописывая при этом букву "с", чтобы вас не смущать.)

В жизни мы очень часто говорим: «вес 5 килограмм», «весит 200 грамм» и так далее. И при этом не знаем, что допускаем ошибку, говоря так. Понятие веса тела изучают все в курсе физики в седьмом классе, однако ошибочное использование некоторых определений смешалось у нас настолько, что мы забываем изученное и считаем, что вес тела и масса это одно и то же.

Однако это не так. Более того, масса тела величина неизменная, а вот вес тела может меняться, уменьшаясь вплоть до нуля. Так в чем же ошибка и как говорить правильно? Попытаемся разобраться.

Вес тела и масса тела: формула подсчета

Масса это мера инертности тела, это то, каким образом тело реагирует на приложенное к нему воздействие, либо же само воздействует на другие тела. А вес тела это сила, с которой тело действует на горизонтальную опору или вертикальный подвес под влиянием притяжения Земли.

Масса измеряется в килограммах, а вес тела, как и любая другая сила в ньютонах. Вес тела имеет направление, как и любая сила, и является величиной векторной. А масса не имеет никакого направления и является величиной скалярной.

Стрелочка, которой обозначается вес тела на рисунках и графиках, всегда направлена вниз, так же, как и сила тяжести.

Формула веса тела в физике записывается следующим образом:

где m - масса тела

g - ускорение свободного падения = 9,81 м/с^2

Но, несмотря на совпадение с формулой и направлением силы тяжести, есть серьезное различие между силой тяжести и весом тела. Сила тяжести приложена к телу, то есть, грубо говоря, это она давит на тело, а вес тела приложен к опоре или подвесу, то есть, здесь уже тело давит на подвес или опору.

Но природа существования силы тяжести и веса тела одинакова притяжение Земли. Собственно говоря, вес тела является следствием приложенной к телу силы тяжести. И, так же как и сила тяжести, вес тела уменьшается с увеличением высоты.

Вес тела в невесомости

В состоянии невесомости вес тела равен нулю. Тело не будет давить на опору или растягивать подвес и весить ничего не будет. Однако, будет по-прежнему обладать массой, так как, чтобы придать телу какую-либо скорость, надо будет приложить определенное усилие, тем большее, чем больше масса тела.

В условиях же другой планеты масса также останется неизменной, а вес тела увеличится или уменьшится, в зависимости от силы притяжения планеты. Массу тела мы измеряем весами, в килограммах, а чтобы измерить вес тела, который измеряется в ньютонах, можно применить динамометр специальное устройство для измерения силы.

Сила тяжести и вес два понятия, участвующие в гравитационном теории поля физики. Эти два понятия часто неправильно истолкованы и используются в неправильном контексте. Эта ситуация усугубляется тем, что на обыденном уровне понятия массы (свойство материи) и веса также воспринимаются как нечто тождественное. Именно поэтому правильное понимания тяжести и веса важно для науки. Зачастую эти две почти аналогичные концепции используются как взаимозаменяемые. В этой статье приведен обзор основных понятий, их проявления, частные случаи, сходства и, наконец, их различия.
Анализ основных понятий:

Сила, направленная на объект со стороны планеты Земля или со стороны другой планеты во Вселенной (любого астрономического тела в широком понимании) является силой тяжести. Сила является наблюдаемой демонстрацией проявления силы гравитации. Численно выражается по уравнению Fтяж=mg (g=9.8м/c2) .

Данная сила приложена к каждой микрочастице тела, на макроуровне это означает, что она приложена к центру тяжести данного тела, так как силы, действующие на всякую частицу отдельно, можно заменить равнодействующей этих сил. Эта сила является векторной, всегда устремленной к центру масс планеты. С другой стороны Fтяж можно выразить через силу гравитации между двумя телами, обычно различными по массе. Будет наблюдаться обратно пропорциональная связанность с интервалом между взаимодействующими объектами в квадрате (по формуле Ньютона).

В случае тела на плоскости им будет являться промежуток между телом и центром массы планеты, что есть ее радиус (R). В зависимости от высоты тела над поверхностью Fтяж и g изменяются, так как увеличивается промежуток между связанными объектами соответственно (R+h) , где h показывает высоту над поверхностью. Отсюда следует зависимость, что чем выше находится объект над уровнем Земли, тем меньше сила тяжести и тем меньше g.

Вес тела, характеристики, сопоставление с силой тяжести

Сила, с которой тело действует на опору или вертикальный подвес называется весом тела (W) . Это векторная, направленная величина. Атомы (или молекулы) тела отталкиваются от частиц основания в результате чего происходит частичная деформация, как опоры, так и объекта, возникают силы упругости и изменяется в некоторых случаях незначительно форма тела и опоры на макроуровне. Возникает сила реакции опоры, параллельно на поверхности тела также возникает сила упругости в ответ на реакцию опоры– это и есть вес. Вес тела (W) векторно противоположно направлен силе реакции опоры.

Частные случаи, для всех их соблюдается равенство W= m(g-a) :

Подставка неподвижна в случае объекта на столе, либо равномерно движется с неизменной скоростью (a=0) В этом случае W=Fтяж.

Если опора ускоряется вниз, тогда и тело ускоряется вниз, тогда W меньше Fтяж и вес вовсе равен нулю, если ускорение равно ускорению свободного падения (при g=a, W=0) При этом присутствует проявление невесомости, опора движется с ускорением g и следовательно будут отсутствовать различные напряжения и деформации от приложенной извне контактно-механической силы. К невесомости, также можно прийти путем размещения тела в нейтральной точке между двумя одинаковыми гравитирующими массами или удалением объекта от источника гравитации.

Однородное гравитационное поле по своей сути не может вызывать «напряжений» в теле, так же как и тело двигаясь под действием Fтяж не будет чувствовать гравитационный разгон и остается невесомым, «стресс-свободным» телом. Вблизи же неоднородного поля (массивных астрономических объектов) свободно падающее тело будет ощущать на себе различные приливные силы и явление невесомости будет отсутствовать так как различные части тела будут неравномерно ускоряться и изменять свою форму.

Подставка с телом движутся вверх . Равнозначная всех сил будет направлена вверх следовательно Fреакции опоры будет больше Fтяж и W больше Fтяж и это состояние называется перегрузкой. Кратность перегрузки (К) – во сколько раз величина веса больше Fтяж. Эту величину учитывают, к примеру, при полетах в космос и военной авиации, так как в основном в этих сферах можно достичь значительных скоростей.

Перегрузка увеличивает нагрузку на органы человека, в основном больше всего нагружаются опорно двигательный аппарат и сердце, вследствие увеличения веса крови и внутренних органов. Перегрузка так же является направленной величиной и ее концентрацию в определенном направлении для организма нужно учитывать (кровь приливает к ногам или к голове и т.п.) Допустимые перегрузки до значения К не более десяти.

Ключевые отличия

  1. Эти силы приложены к неодинаковым «областям». Fтяж приложена к центру тяжести объекта, а вес приложен к опоре или подвесу.
  2. Отличие состоит и в физической сущности: сила тяжести – это гравитационная сила, вес же имеет электромагнитную природу. По сути тело не подверженное деформации со стороны внешних сил находится в невесомости.
  3. Fтяж и W могут отличаться как по количественному значению, так и по направленности, если ускорение тела не равно нулю, то Wтела либо больше, либо меньше силы тяжести, как в вышеуказанных случаях (если ускорение направлено под углом, то W направлен в сторону ускорения).
  4. Вес тела и сила тяжести на полюсах планеты и экваторе. На полюсе объект, лежащий на поверхности движется с ускорением а=0, так как находится на оси вращения, следовательно, Fтяж и W будут совпадать. На экваторе учитывая вращение с запада на восток, у тела появляется центростремительное ускорение и фокус всех сил по закону Ньютона будет устремлен к центру планеты, в сторону ускорения. Противопоставленная силе тяжести сила реакции опоры будет направлена так же к центру земли, но она будет меньше Fтяж и вес тела соответственно будет меньше Fтяж.

Заключение

В 20-м веке, понятия абсолютного пространства и времени были оспорены. Релятивистский подход поставил не только всех наблюдателей, но и перемещение или ускорение, на те же относительные основы. Это привело к неясности касательно того, что именно подразумевается под действием силы тяжести и веса. Шкалу в ускоряющемся лифте, например, нельзя отличить от масштаба в гравитационном поле.

Гравитационная сила и вес, таким образом, стали по существу зависимы от акта наблюдения и наблюдателя. Это вызвало отказ от концепции, как лишней в фундаментальных дисциплинах, таких как физика и химия. Тем не менее, представление остается важным в преподавании физики. Двусмысленность введенные относительности привели, начиная с 1960-х годов, к дискуссиям о том, как определить вес, выбирая между номинальным определением: сила, обусловленная действием силы тяжести или оперативного определения, определяемого напрямую актом взвешивания.

Какое слово вы употребляете чаще: «масса» или «вес»? Думаю, это зависит от вашей профессии. Если вы учитель физики, то слово «масса» встречается в вашей речи чаще. Если же вы продавец в магазине, то слово «вес» вы слышите и произносите много раз в день. В чём же отличия массы от веса и причём тут профессиональная деятельность? Масса и вес – синонимы, но не абсолютные. Для начала, у обоих слов существует несколько значений. В этом легко убедиться на примере таких словосочетаний: «вес твоего голоса», «вес груза», «масса отличий», «масса тела». Основные значения этих слов в обиходе совпадают, но в науке, особенно в физике, отличия между массой и весом значительные. Так, масса – это физическая величина, определяющая инертные и гравитационные свойства тел. Масса определяет количество вещества в предмете. Вес – это сила, с которой объект давит на опору, чтобы не упасть. Исходя из этого определения, приходим к выводу, что в случае с весом гравитационная составляющая является обязательной для дачи верного определения. Так, например, если вес космонавта на земле 80 кг, то его вес на орбите будет почти нулевой, на Луне он бы весил меньше 15 кг, а вот на Юпитере — почти 200 кг. При этом его масса во всех случаях остается неизменной.
Официально масса и вес имеют различные единицы измерения, масса – килограммы, вес – ньютоны. Интересно, что в медицине традиционно мы имеем дело с понятием «вес человека», «вес новорождённого», который измеряют в килограммах, то есть на самом деле речь идёт о массе. При этом масса не подразумевает действие каких-либо сил, как вес. Это величина, которая рассчитывается в состоянии покоя и инертности.

Вот какие весомые отличия между весом и массой выделяет TheDifference.ru:

Масса — фундаментальная физическая величина, определяющая количество вещества и инертные свойства тела. Вес — это сила, с которой предмет давит на опору, которая зависит от гравитации. Например, масса человека на разных планетах остается той же, а вес меняется в зависимости от силы тяжести.
Масса стандартно измеряется в килограммах, вес – в ньютонах.